【题目】已知函数.
(1)当时,判断在上的单调性并加以证明;
(2)若,,求的取值范围.
【答案】(1)在为增函数;证明见解析(2)
【解析】
(1)令,求出,可推得,故在为增函数;
(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.
(1)当时,.
记,则,
当时,,.
所以,所以在单调递增,所以.
因为,所以,所以在为增函数.
(2)由题意,得,记,则,
令,则,
当时,,,所以,
所以在为增函数,即在单调递增,
所以.
①当,,恒成立,所以为增函数,即在单调递增,
又,所以,所以在为增函数,所以
所以满足题意.
②当,,令,,
因为,所以,故在单调递增,
故,即.
故,
又在单调递增,
由零点存在性定理知,存在唯一实数,,
当时,,单调递减,即单调递减,
所以,此时在为减函数,
所以,不合题意,应舍去.
综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,侧面底面,是边长为2的正三角形,已知点满足.
(1)求二面角的大小;
(2)求异面直线与的距离;
(3)直线上是否存在点,使平面?若存在,请确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“”的否定是“”
B.命题“已知,若则或”是真命题
C.命题“若则函数只有一个零点”的逆命题为真命题
D.“在上恒成立”在上恒成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两人进行射击比赛,各射击局,每局射击次,射击中目标得分,未命中目标得分,两人局的得分情况如下:
甲 | ||||
乙 |
(1)若从甲的局比赛中,随机选取局,求这局的得分恰好相等的概率;
(2)从甲,乙两人的局比赛中随机各选取局,记这局的得分和为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn,若对任意正整数n,总存在正整数m,使得Sn=am,则称数列{an}为S数列.
(1)S数列的任意一项是否可以写成其某两项的差?请说明理由.
(2)①是否存在等差数列为S数列,若存在,请举例说明;若不存在,请说明理由.
②是否存在正项递增等比数列为S数列,若存在,请举例说明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个几何体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该几何体的体积为_____,其外接球的表面积为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com