精英家教网 > 高中数学 > 题目详情
7.方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1的图象表示曲线C,则以下命题中
甲:曲线C为椭圆,则1<t<4;      乙:若曲线C为双曲线,则t>4或t<1;
丙:曲线C不可能是圆;            丁:曲线C表示椭圆,且长轴在x轴上,则1<t<$\frac{5}{2}$.
正确的有(  )
A.1个B.2个C.3个D.4个

分析 根据方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1,利用椭圆、双曲线、圆的定义,即可得出结论.

解答 解:方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲线C,以下命题:
若4-t>0,t-1>0且4-t≠t-1,解得1<t<4且t≠$\frac{5}{2}$,则曲线C为椭圆,因此不正确;
若曲线C为双曲线,则(4-t)(t-1)<0,解得t<1或t>4,正确;
当4-t=t-1>0,即t=$\frac{5}{2}$时,曲线C表示圆,因此不正确;
若曲线C为焦点在x轴上的椭圆,则4-t>t-1>0,解得1<t<$\frac{5}{2}$,正确.
故选:B.

点评 本题考查了分类讨论的思想方法,考查了椭圆双曲线圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.判断下列函数的零点个数.
(1)f(x)=x2-7x+12;  
(2)f(x)=x2-$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了解某省去年高三考生英语听力成绩,现从某校高三年级随机抽取50名考生的成绩,发现全部介于[6,30]之间,将成绩按如下方式分成6组:第1组[6,10),第2组[10,14),…,第6组[26,30],如图是按上述分组方法得到的频率分布直方图.
(1)在这50人中,分数不低于18分的有多少人?
(2)估计此次考试成绩的平均数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是某算法的程序框图,则输出的S=(  )
A.6B.27C.124D.604

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在某中学举行的环保知识竞赛中,随机抽取x名参赛同学的成绩(得分的整数)进行整理后分成五组,绘制出如图所示的频率分布直方图,已知图中从左到右的第一、第三、第四、第五小组的频率分别为0.30,0.15,0.10,0.05,第二小组的频数为40.
(1)求第二小组的频率,并补全这个频率分布直方图,画出频率分布折线图;
(2)若采用分层抽样的方法,从样本中随机取20人,则第三组和第四组各抽取多少人?
(3)在(2)的条件下,从第三组和第四组抽取的人中任选取2人,则她们不在同一组别的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知{an}是等差数列,Sn是其前n项和,S11=$\frac{33}{4}$π,则tana6=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某楼盘开展套餐促销优惠活动,优惠方案如下:选择套餐一的客户可获得优惠2万元,选择套餐二的客户可获得优惠5万元,选择套餐三的客户可获得优惠3万元.根据以往的统计结果绘出参与活动的统计图如图所示,现将频率视为概率.
(1)求某两客户选择同一套餐的概率;
(2)若用随机变量ξ表示某两客户所获优惠金额的总和,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3(x+2)(x-3)(x+4)+x的零点的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.分别用角度制、弧度制下的弧长公式,计算半径为1m的圆中,60°的圆心角所对的弧的长度 (可用计算器).

查看答案和解析>>

同步练习册答案