精英家教网 > 高中数学 > 题目详情
已知命题p:
2-x
2x-1
>1
,命题q:x2+2x+1-m≤0(m>0)若非p是非q的必要不充分条件,那么实数m的取值范围是______.
由题意,p:
1
2
<x<1
,∴?p:x≤
1
2
或x≥1;
q:x2+2x+1-m≤0(m>0),∴?q:x2+2x+1-m>0,∴(x+1)2>m,
解得?q:x<-1-
m
x>-1+
m

∵?p是?g的必要不充分条件,∴
-1-
m
1
2
-1+
m
≥1
-
m
3
2
m
≥2
,∴m≥4.
故实数m的取值范围是[4,+∞)
故答案为:[4,+∞)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+
y2k-t
=1
表示焦点在y轴上的椭圆;命题q:函数f(x)=x2-kx+1有两个不同的零点.
(1)当t=0时,“p∨q”为真,且“p∧q”为假,求实数k的取值范围;
(2)若p是¬q的必要不充分条件,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2-(2+a)x+2a=0在[-1,1]上有且仅有一解;命题q:存在实数x使不等式x2+2ax+2a≤0成立,若命题“p∧q”是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2-(2+a)x+2a=0在[-1,1]上有且仅有一解;命题q:存在实数x使不等式x2+2ax+2a≤0成立,若命题“p∧q”是真命题,则a的取值范围为
{a|-1≤a≤0}
{a|-1≤a≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2-3ax+2a2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式 x2+2ax+2a≤0,若命题“p 或q”是假命题,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知命题p:方程x2+(m-3)x+1=0无实根,命题q:方程x2+
y2m-1
=1是焦点在y轴上的椭圆.若¬p与p∧q同时为假命题,求m的取值范围.
(2)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案