精英家教网 > 高中数学 > 题目详情
4.设集合U={1,2,3,4,5,6},A={1,3},B={2,3,4},则图中阴影部分所表示的集合是(  )
A.{4}B.{2,4}C.{4,5}D.{1,3,4}

分析 由韦恩图可以看出,阴影部分是B中去掉A那部分所得,由韦恩图与集合之间的关系易得出阴影部分为B∩CUA,代入进行求解;

解答 解:U={1,2,3,4,5,6},A={1,3},B={2,3,4},则图中阴影部分所表示为B∩CUA,
∵CUA={2,4,5,6},
∴B∩CUA={2,4},
故选:B.

点评 本题根据图形中阴影部分,让我们找出它所表示的集合,着重考查了Venn图表达集合的关系及运算,考查了数形结合的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.阅读如图所示的算法框图,运行相应的程序,则循环体执行的次数是(  )
A.50B.49C.100D.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos15°的值为(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$C.$2-\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2a2lnx(a>0).
(1)若f(x)在x=1处取得极值,求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(文)已知数列{an}的前n项和为Sn=n2+$\frac{1}{2}$n,则数列的通项公式an=$2n-\frac{1}{2}$;
(理)已知数列{an}的前n项和为Sn=$\frac{1}{4}{n^2}+\frac{2}{3}$n+3,则数列的通项公式an=$\left\{\begin{array}{l}{\frac{47}{12},}&{n=1}\\{\frac{6n+5}{12},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据
身高(厘米)192164172177176159171166182166
脚长(码)48384043443740394639
身高(厘米)169178167174168179165170162170
脚长(码)43414043404438423941
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.
(2)根据(1)中的2×2列联表,试运用独立性检验的思想方法:能否在犯错误的概率不超过0.01的前提下认为脚的大小与身高之间有关系.
高个非高个合计
大脚
非大脚12
合计20
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
  k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为1:2:8:6:3,最后一组数据的频数是6.用频率估计概率的方法,估计该校高三学生质检数学成绩在125~140分之间的概率和样本容量为(  )
A.$\frac{1}{10}$,60B.$\frac{2}{5}$,15C.$\frac{3}{10}$,20D.$\frac{3}{20}$,40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.奇函数f(x)与偶函数g(x)的图象分别如图甲与图乙所示,设方程f(g(x))=0与g(f(x))=0的实根个数分别为a,b,则a+b的值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知a,b,c分别为∠A,∠B,∠C所对的边,且a=4$\sqrt{3}$,b=4,∠A=60°,则∠B=(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

同步练习册答案