精英家教网 > 高中数学 > 题目详情
12.如图所示,一个半径为10m的摩天轮,轮子的底部在地面上2m处,如果此摩天轮按逆时针方向转动,每30s转一圈,且当摩天轮上某人经过点P处(∠POA=30°)时开始计时.
(1)求此人相对于地面的高度h(m)关于时间t(s)的函数关系式;
(2)在摩天轮转动一圈内,约有多长时间此人相对于地面的高度不小于17m.

分析 (1)根据题意,求出t时摩天轮上某人所转过的角度,计算此人相对于地面的高度h;
(2)根据高度h(m)的解析式,求出此人相对于地面的高度不小于17的时间.

解答 解:(1)根据题意,在t时,摩天轮上某人所转过的角为$\frac{2π}{30}$t=$\frac{π}{15}$t,
故在t时,此人相对于地面的高度为
$h=10sin({\frac{π}{15}t-\frac{π}{6}})+12$(t≥0);…(6分)
(2)由$10sin({\frac{π}{15}t-\frac{π}{6}})+12$≥17,
得$sin({\frac{π}{15}t-\frac{π}{6}})$≥$\frac{1}{2}$,
则5≤t≤15;
故此人有10 s相对于地面的高度不小于17 m.…(12分)

点评 本题考查了三角函数模型的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知直线y=x+1与椭圆mx2+my2=1(m>n>0)相交于A,B两点,若弦AB的中点的横坐标等于-$\frac{1}{3}$,则双曲线$\frac{y^2}{m^2}-\frac{x^2}{n^2}$=1的离心率等于(  )
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正方体ABCD-A1B1C1D1中直线BC1与平面BB1D1D所成角的余弦值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E的两个焦点分别为(0,-1)和(0,1),离心率e=$\frac{\sqrt{2}}{2}$
(1)求椭圆E的方程
(2)若直线l:y=kx+m(k≠0)与椭圆E交于不同的两点A、B,且线段AB的垂直平分线过定点P(0,$\frac{1}{2}$),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB为圆O的直径,E是圆O上不同于A,B的动点,四边形ABCD为矩形,且AB=2,AD=1,平面ABCD⊥平面ABE.
(1)求证:BE⊥平面DAE;
(2)当平面ABCD与平面CD E所成二面角为30°时,证明△ABE的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=x2+1在P($\frac{1}{2}$,$\frac{5}{4}$)处的切线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且经过点(1,$\frac{3}{2}$)
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=6,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$(2x-1){(\frac{1}{x}+x)^6}$在展开式中x3的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设焦点在x轴上的椭圆$\frac{x^2}{4}+\frac{y^2}{k}=1$的离心率为e,且$e∈(\frac{1}{2},1)$,则实数k的取值范围是(  )
A.(0,3)B.$(3,\frac{16}{3})$C.$(0,3)∪(3,\frac{16}{3})$D.(0,2)

查看答案和解析>>

同步练习册答案