【题目】将所有平面向量组成的集合记作,是从到的对应关系,记作或,其中、、、都是实数,定义对应关系的模为:在的条件下的最大值记作,若存在非零向量,及实数使得,则称为的一个特殊值;
(1)若,求;
(2)如果,计算的特征值,并求相应的;
(3)若,要使有唯一的特征值,实数、、、应满足什么条件?试找出一个对应关系,同时满足以下两个条件:①有唯一的特征值,②,并验证满足这两个条件.
【答案】(1) ;(2) 当时,;当时, .其中且;(3) ,证明见解析
【解析】
(1)由新定义得,再利用得即可.
(2)由特征值的定义可得,由此可得的特征值,及相应的
(3) 解方程组,再利用平行向量的方法求解证明即可.
(1)由于此时,又因为是在的条件下,有,当时取最大值,所以此时有;
(2)由,可得:,
解此方程组可得:,从而.
当时,解方程组,此时这两个方程是同一个方程,所以此时方程有无穷多个解,为 (写出一个即可),其中且.
当时,同理可得,相应的 (写出一个即可),其中且 (3)解方程组,可得从而向量与平行,从而有、、、应满足:.
当时,有唯一的特征值,且.具体证明为:
由的定义可知:,所以为特征值.
此时满足:,所以有唯一的特征值.
在的条件下,从而有.
科目:高中数学 来源: 题型:
【题目】某校高三期中考试后,数学教师对本次全部学生的数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:
分数段(分) | 总计 | |||||
频数 | ||||||
频率 | 0.25 |
(1)求表中,的值及成绩在范围内的样本数;
(2)从成绩内的样本中随机抽取4个样本,设其中成绩在内的样本个数为随机变量,求的分布列及数学期望;
(3)若把样本各分数段的频率看作总体相应各分数段的概率,现从全校高三期中考试数学成绩中随机抽取5个,求其中恰有2个成绩在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体的棱长为1,线段上有两个动点,,且,则下列结论中错误的是____________.
①;
②平面;
③三棱锥的体积为定值;
④异面直线,所成的角为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:,,,,.
②参考公式:相关系数,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,长轴长为.
(Ⅰ)求椭圆的标准方程及离心率;
(Ⅱ)过点的直线与椭圆交于,两点,若点满足,求证:由点 构成的曲线关于直线对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的运动方式,小王的微信朋友内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
性别 步数 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步数超过8000步被系统评定为“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ=|X﹣Y|,求E的分布列及数学期望.
附:K2,n=a+b+c+d.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为菱形,为的中点,.
(1)求证:平面;
(2)点在线段上,,试确定的值,使平面;
(3)若平面,平面平面,求二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com