精英家教网 > 高中数学 > 题目详情

【题目】某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取名,每名用户赠送元的红包,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例);

1)根据上面的数据求出关于的回归直线方程;

2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于万元,能否把保费定为5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

参考公式:回归方程中斜率和截距的最小二乘估计分别为

参考数据:表中5个值从左到右分别记为,相应的值分别记为,经计算有,其中

【答案】(1);(2)能

【解析】

1由已知表格中的数据求得,进而可得线性回归方程;

2)求出保费定为5元时,该手机厂商在这次活动中,因销售该“手机碎屏险”产生的利润,与70万元比较,即可得出结果.

解:(1)由已知得

所以

关于的回归直线方程为

2)能把保费定为5元.

理由如下:若保费定为5元,则估计

估计该手机厂商在这次活动中因销售该“手机碎屏险”产生的利润为

(万元)(万元).

把保费定为5元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载的刍甍chu meng)是指底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍,其中是正三角形,,则以下两个结论:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:

年份

2014

2015

2016

2017

2018

年生产台数(万台)

2

4

5

6

8

该产品的年利润(百万元)

30

40

60

50

70

年返修台数(台)

19

58

45

71

70

注:

(1)从该公司2014-2018年的相关数据中任意选取3年的数据,求这3年中至少有2年生产部门考核优秀的概率.

(2)利用上表中五年的数据求出年利润(百万元)关于年生产台数(万台)的回归直线方程是 ①.现该公司计划从2019年开始转型,并决定2019年只生产该产品1万台,且预计2019年可获利32(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的的值(精确到0.01),相对于①中的值的误差的绝对值都不超过时,2019年该产品返修率才可低于千分之一.若生产部门希望2019年考核优秀,能否同意2019年只生产该产品1万台?请说明理由.

(参考公式: 相对的误差为.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,设椭圆的左焦点为,短轴的两个端点分别为,且,点上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆和圆分别相切于,两点,当面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面真角坐标系xOy中,曲线的参数方程为t为参数),以原点O为极点,x轴正半轴为极轴,建立根坐标系.曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线与曲线交于MN两点,直线OMON的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为等边三角形,

(1)若点分别是线段的中点,求证:平面平面

(2)若二面角为直二面角,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,若点在椭圆C上,则点称为点M的一个椭点”.

1)求椭圆C的标准方程;

2)若直线与椭圆C相交于AB两点,且AB两点的椭点分别为PQ,以PQ为直径的圆经过坐标原点,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点是该椭圆的左、右焦点,是上顶点,且是等腰直角三角形.

1)求的方程;

2)已知是坐标原点,直线与椭圆相交于两点,点上且满足四边形是一个平行四边形,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,椭圆C:(a>b>0)离心率为,其短轴长为2.

(1)求椭圆C的标准方程;

(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k1,k2,且k1k2(λ,μ为非零实数),求λ22的值.

查看答案和解析>>

同步练习册答案