精英家教网 > 高中数学 > 题目详情
20.函数f(x)=x4+2x2是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

分析 利用偶函数的定义,即可得出结论.

解答 解:∵f(-x)=(-x)4+2(-x)2=x4+2x2=f(x),
∴函数f(x)=x4+2x2是偶函数,
故选B.

点评 本题考查函数的奇偶性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.请认真阅读下列程序框图,然后回答问题,其中n0∈N.
(1)若输入n0=0,写出所输出的结果;
(2)若输出的结果中有5,求输入的自然数n0的所有可能的值;
(3)若输出的结果中,只有三个自然数,求输入的自然数n0的所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{{{m^2}+12}}-\frac{y^2}{{4-{m^2}}}=1$的焦距是(  )
A.8B.4C.$2\sqrt{2}$D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若 M={1,2,4,5},N={2,3,4,6},则M∩N=(  )
A.{2,3}B.{2}C.{1,3,4}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则3$\overrightarrow{a}$•$\overrightarrow{b}$=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在函数$f(x)=\frac{1}{3}{x^3}-2{x^2}+ax({a∈R})$的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)在任一点处的切线倾斜角为α,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)是定义在R上的奇函数,满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=2x-2,则f(log${\;}_{\frac{1}{2}}$24)的值等于(  )
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥C-ABDE中,F为CD的中点,BD⊥平面ABC,BD∥AE且BD=2AE.
(1)求证:EF∥平面ABC;
(2)已知AB=BC=CA=BD=2,求平面ECD与平面ABC所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,BC为圆O的直径,D为圆周上异于B、C的一点,AB垂直于圆O所在的平面,BE⊥AC于点E,BF⊥AD于点F.
(Ⅰ)求证:BF⊥平面ACD;
(Ⅱ)若AB=BC=2,∠CBD=45°,
①求直线BC与平面BEF所成的角
②求四面体BDEF的体积.

查看答案和解析>>

同步练习册答案