分析 (1)根据二次函数的性质求出m的范围即可;(2)根据p与q为一真一假,得到关于m的不等式组,解出即可.
解答 解:(1)不等式x2-(2m-1)x+m2≥0对任意实数x恒成立,
则△=(2m-1)2-4m2=-4m+1≤0得:m≥$\frac{1}{4}$;
(2)若“p∧q”为假,“p∨q”为真,
则p与q为一真一假,
①当p真q假时,$\left\{\begin{array}{l}{m≥\frac{1}{4}}\\{m≥1}\end{array}\right.$,故m≥1;
②当p假q真时,$\left\{\begin{array}{l}{m<\frac{1}{4}}\\{m<1}\end{array}\right.$,故m<$\frac{1}{4}$,
综上,实数m的范围是(-∞,$\frac{1}{4}$)∪[1,+∞).
点评 本题考查了二次函数的性质,考查复合命题的判断,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | (8,9) | B. | (9,10) | C. | (10,11) | D. | (11,12) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}m$ | B. | $\sqrt{3}m$ | C. | $\frac{{3\sqrt{3}}}{2}m$ | D. | $\frac{3}{2}m$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y2=4x | B. | y2=-4x | C. | x2=4y | D. | x2=-4y |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {2,5} | B. | {3,6} | C. | {2,5,6} | D. | {2,3,5,6,8} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com