精英家教网 > 高中数学 > 题目详情
(2011•杭州一模)已知函数f(x)=2x3+px+r,g(x)=15x2+qlnx(p,q,r∈R).
(I)当r=-35时f(x)和g(x)在x=1处有共同的切线,求p、q的值;
(II)已知函数h(x)=f(x)-g(x)在x=1处取得极大值-13,在x=x1和x=x2(x1≠x2)处取得极小值h(x1)和h(x2),若h(x1)+h(x2)<kln3-10成立,求整数k的最小值.
分析:(Ⅰ) 由题意得:
f′(1)=g′(1)
f(1)=g(1)
,代入可求p,q
(Ⅱ)由题意可得
h′(1)=0
h(1)=-13
代入可得p,qr的关系,代入到h′(x)中,若h(x1)+h(x2)<kln3-10成立,则只要h(x1)+h(x2)的最大值<kln3-10,从而可求k
解答:解:(Ⅰ) f′(x)=6x2+p,g′(x)=30x+
q
x

由题意得:
f′(1)=g′(1)
f(1)=g(1)
,故
6+p=30+q
2+p-35=15
,解得:
p=48
q=24
.      (5分)
(Ⅱ)∵h(x)=f(x)-g(x)=2x3+px+r-15x2-qlnx,
h′(x)=6x2+p-30x-
q
x

h′(1)=0
h(1)=-13
得:
6+p-30-q=0
2+p+r-15=-13
,得
q=p-24
r=-p

h′(x)=6x2+p-30x-
p-24
x
=
6x3-30x2+px-p+24
x
=
6x3-6x2-24x2+px-p+24
x
=
(x-1)(6x2-24x-24+p)
x

由题意知h(x)在x=x1和x=x2处取得极小值,则0<x1<1<x2
设m(x)=6x2-24x+p-24,则
m(0)>0
m(1)<0
,从而24<p<42.
x1+x2=4
x1x2=
p-24
6
,设x1x2=t,则0<t<3
.h(x1)+h(x2)=2(x13+x23)+p(x1+x2)-2p-15(x12+x22)-(p-24)ln(x1x2)
=2(x1+x2)[(x1+x2)2-3x1x2]+4p-2p-15[(x1+x2)2-2x1x2]-(p-24)ln(x1x2)
=-112+6•x1x2+2p-(p-24)ln(x1x2
=-112+6t+12t+48-6tlnt
=-64+18t-6tlnt.             (6分)
设F(t)=-64+18t-6tlnt,
则F′(t)=18-(6lnt+6)=6(2-lnt)>0,
∴F(t)在(0,3)上是增函数,
∴h(x1)+h(x2)<F(3)=-10-18ln3.
则kln3-10≥-10-18ln3,从而k≥-18.
即:所求的k的最小值为-18.
点评:本题主要考查了导数的几何意义的基本应用,函数的恒成立与函数的最值的相互转化关系的应用,还考查了计算的能力,属于综合性试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•杭州一模)设α∈(0 
π
2
)
.若tanα=
1
3
,则cosα=
3
10
10
3
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•杭州一模)已知点O为△ABC的外心,角A,B,C的对边分别满足a,b,c,
(I)若3
OA
+4
OB
+5
OC
=
0
,求cos∠BOC的值;
(II)若
CO
AB
=
BO
CA
,求
b2+c2
a2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•杭州一模)设函数f(x)=x-2sinx是区间[t,t+
π
2
]上的增函数,则实数t的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•杭州一模)已知等比数列{an}的公比大于1,Sn是数列{an}的前n项和,S3=39,且a1
2
3
a2
1
3
a3
依次成等差数列.
(Ⅰ)求数列{an}的通项公式;
(II)若数列{bn}满足:b1=3,bn=an
1
a1
+
1
a2
+…+
1
an-1
)(n≥2),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•杭州一模)设函数f(x)=
2+log3x,x>0
3-log2(-x),x<0
,则f(
3
)+f(-
2
)=(  )

查看答案和解析>>

同步练习册答案