精英家教网 > 高中数学 > 题目详情

【题目】下列各式中,正确的是(  )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

【答案】D
【解析】 由于2∈{x|x≤2},故A不对; 由于{x|x>2且x<1}是空集,故3∈{x|x>2且x<1}不成立;
由于{x|x=4k±1,k∈Z}={x|x=2k+1,k∈Z},故C不对;
由于{x|x=3k﹣2,k∈Z}={x|x=3(k﹣1)+1,k∈Z}={x|x=3k+1,k∈Z},故D正确
故选D
【考点精析】本题主要考查了元素与集合关系的判断和集合的相等关系的相关知识点,需要掌握对象与集合的关系是,或者,两者必居其一;只要构成两个集合的元素是一样的,就称这两个集合相等才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2x+5,令g(x)=(2﹣2a)x﹣f(x)
(1)若函数g(x)在x∈[0,2]上是单调增函数,求实数a的取值范围;
(2)求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=loga| |的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数).

(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;

(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)当时,求曲线在处的切线方程;

2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,已知平面 .

(1)求证:平面平面

(2)直线与平面所成角为,求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆 的离心率为,直线ly=2上的点和椭圆上的点的距离的最小值为1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 已知椭圆的上顶点为A,点BC上的不同于A的两点,且点BC关于原点对称,直线ABAC分别交直线l于点EF.记直线的斜率分别为

① 求证: 为定值;

② 求△CEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x-1|+|2x-1|.

)若对x>0,不等式f(x)≥tx恒成立,求实数t的最大值M;

(Ⅱ)在()成立的条件下,正实数a,b满足a2+b2=2M.证明:a+b≥2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2cos sin),=(cos,2cos),(ω>0),设函数f(x)=,且f(x)的最小正周期为π.

(1)求函数f(x)的表达式;

(2)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案