精英家教网 > 高中数学 > 题目详情

【题目】设x轴、y轴正方向上的单位向量分别是 ,坐标平面上点列An、Bn(n∈N*)分别满足下列两个条件:① = = + ;② =4 = ×4
(1)写出 的坐标,并求出 的坐标;
(2)若△OAnBn+1的面积是an , 求an(n∈N*)的表达式;
(3)对于(2)中的an , 是否存在最大的自然数M,对一切n∈N*都有an≥M成立?若存在,求出M,若不存在,说明理由.

【答案】
(1)解: = + = + + = +2 =(1,2), =2 +3 =(2,3)

=(n﹣1) +n =(n﹣1,n)


(2)解:An(n﹣1,n),它满足直线方程y=x+1,因此点An在直线y=x+1上.

=(1+1﹣ +…+ )×4 = ×

∴△OAnBn+1的面积an= =


(3)解:设t=n+1,(t≥2,t∈N+)则an=4t+ ﹣6,

y=4t+ ,则y′=4﹣ >0在[2,+∞)上恒成立,

∴an=4t+ ﹣6≥3,

∵对一切n∈N*都有an≥M成立,

∴M≤3,

∴M的最大值为3


【解析】(1)利用向量的加法运算写出 的坐标,并求出 的坐标;(2)An(n﹣1,n),它满足直线方程y=x+1,因此点An在直线y=x+1上. =(1+1﹣ +…+ )×4 = × ,即可求an(n∈N*)的表达式;(3)设t=n+1,(t≥2,t∈N+)则an=4t+ ﹣6,an=4t+ ﹣6≥3,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017安徽马鞍山二模】已知动圆过定点,且在轴上截得的弦长为4,记动圆圆心的轨迹为曲线C

(Ⅰ)求直线与曲线C围成的区域面积;

(Ⅱ)点在直线上,点,过点作曲线C的切线,切点分别为,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72


(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(x,1);
(1)若( +2 )⊥(2 )时,求x的值;
(2)若向量 与向量 的夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017扬州一模20】已知函数,其中函数

(1)求函数处的切线方程

(2)当时,求函数上的最大值;

(3)当时,对于给定的正整数,问函数是否有零点?请说明理由.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017南京一模19】设函数

(1)当时,解关于的方程(其中为自然对数的底数);

(2)求函数的单调增区间;

(3)当时,记函数,是否存在整数,使得关于的不等式

有解?若存在,请求出的最小值;若不存在,请说明理由

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检.

(1)求每组抽取的学生人数;
(2)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是容量为100的样本的频率分布直方图,则样本数据在[6,10)内的频率和频数分别是( )

A.0.32,32   
B.0.08,8  
C.0.24,24   
D.0.36,36

查看答案和解析>>

同步练习册答案