【题目】过抛物线上点作三条斜率分别为,,的直线,,,与抛物线分别交于不同于的点.若,,则以下结论正确的是( )
A.直线过定点B.直线斜率一定
C.直线斜率一定D.直线斜率一定
科目:高中数学 来源: 题型:
【题目】已知是一个单调递增的等比数列,是一个等差数列,是的前项和,其中,,成等差数列,.
(1)求的通项公式;
(2)若,,既成等比数列,又成等差数列.
(i)求的通项公式;
(ii)对于数列,若且,或且,则为数列的转折点,求的转折点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为和的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为,宽为内接正方形的边长.由刘徽构造的图形还可以得到许多重要的结论,如图3.设为斜边的中点,作直角三角形的内接正方形对角线,过点作于点,则下列推理正确的是( )
①由图1和图2面积相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在处取得极值A,函数,其中…是自然对数的底数.
(1)求m的值,并判断A是的最大值还是最小值;
(2)求的单调区间;
(3)证明:对于任意正整数n,不等式成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:)
A. 2B. C. 4D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn和通项an满足.
(1)求数列{an}的通项公式;
(2)等差数列{bn}中,b1=3a1,b2=2,求数列{an+bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)(cosθ+1)cos2x+cosθ(cosx+1),有下述四个结论:①f(x)是偶函数;②f(x)在(,)上单调递减;③当θ∈[,]时,有|f(x)|;④当θ∈[,]时,有|f'(x)|;其中所有真命题的编号是( )
A.①③B.②④C.①③④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为等差数列的前n项和,是正项等比数列,且,.在①,②,③这三个条件中任选一个,回答下列为题:
(1)求数列和的通项公式;
(2)如果(m,),写出m,n的关系式,并求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com