精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,\;x>0\\{2^x},\;\;\;x<0\end{array}$,则$f({f(\frac{1}{4})})$=$\frac{1}{4}$.

分析 由已知条件和,利用分段函数的性质先利用对数性质和运算法则求出f($\frac{1}{4}$),再由指数性质和运算法则求出$f({f(\frac{1}{4})})$.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{log_2}x,\;x>0\\{2^x},\;\;\;x<0\end{array}$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
∴$f({f(\frac{1}{4})})$=f(-2)=2-2=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知关于x不等式x2-mx-6m<0的解集为{x|-3<x<6},则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{2x-1}{x+1}$,x∈[3,5].
(Ⅰ)判断函数在区间[3,5]上的单调性,并给出证明;
(Ⅱ)求该函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x${\;}^{-2{m}^{2}+m+3}$ (m∈Z)是偶函数,且f(x)在(0,+∞)上单调递增.
(1)求m的值,并确定f(x)的解析式;
(2)g(x)=log2[3-2x-f(x)],求g(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\vec a,\vec b,\vec c$满足:$\vec a$⊥$\vec c$,$\vec b•\vec c$=-2,|${\vec c}$|=2,$\vec c$=$\vec a$+λ$\vec b$,则实数λ的值为(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将抛物线y=x2+2x向上平移1个单位长度,向左平移2个单位长度得到的函数图象解析式是y=(x+3)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°
(I)求证:PB⊥AD;
(II)若PB=$\sqrt{6}$,求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax2-lnx(a∈R).
(1)如果函数f(x)的图象不在x轴的下方,求实数a的取值范围.
(2)若方程f(x)-k=0在区间[$\frac{1}{e}$,e]内有两个不相等的实根.求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,若AD=PA=a,AB=$\sqrt{2}$a.
(1)在PC上是否存在一点Q,使得AQ∥平面MND?若存在,求出该点的位置,若不存在,请说明理由;
(2)求二面角N-MD-C大小.

查看答案和解析>>

同步练习册答案