精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求函数的单调区间及极值;

2)讨论函数的零点个数.

【答案】1)增区间为,减区间为,极大值为,无极小值,(2)当时,函数没有零点;当时.函数1个零点;当时,函数2个零点.

【解析】

1)求导,求出的解,即可求出单调区间,进而求出极值;

2)求导,求出单调区间,确定极值,根据极值的正负以及零点存在性定理,对分类讨论,即可求解.

由题得,函数的定义域为.

1)当时,

所以

时,,函数单调递增;

时,,函数单调递减,

所以函数的单调递增区间为,单调递减区间为.

所以当时,有极大值,

且极大值为,无极小值.

2)由,得.

时,恒成立,函数单调递增,

时,

,所以函数有且只有一个零点;

时,令

时,,函数单调递增;

时,,函数单调递减,

所以的极大值为

①当,即得时,

解得,此时函数没有零点;

②当,即时,函数1个零点;

③当,即时,

.

时,令

上恒成立,

所以,即

所以

故当时,.

时,有

所以函数2个零点.

综上所述:当时,函数没有零点;

.函数1个零点;

时,函数2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PCDEAD的中点,ACBE相交于点O.

1)证明:平面ABCD.

2)求直线BC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为非零常数.

讨论的极值点个数,并说明理由;

证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据

1)试计算2012年的快递业务量;

2)分别将2013年,2014年,…,2017年记成年的序号t12345;现已知yt具有线性相关关系,试建立y关于t的回归直线方程

3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量

附:回归直线的斜率和截距地最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,

1)求异面直线所成角的正切值;

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:

愿意购买该款手机

不愿意购买该款手机

总计

40岁以下

600

40岁以上

800

1000

总计

1200

1)根据图中的数据,试估计该款手机的平均使用时间;

2)请将表格中的数据补充完整,并根据表中数据,判断是否有999%的把握认为愿意购买该款手机市民的年龄有关.

参考公式:,其中

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中abc成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)

分组

频数

6

9

20

10

5

1)根据频率分布直方图,请估计数学成绩的平均分;

2)根据物理成绩统计表,请估计物理成绩的中位数;

3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由中央电视台综合频道和唯众传媒联合制作的开讲啦是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了AB两个地区的100名观众,得到如表的列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中非常满意的观众的概率为

非常满意

满意

合计

A

30

15

B

合计

完成上述表格并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;

若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众非常满意的人数为X,求X的分布列和期望.

附:参考公式:

查看答案和解析>>

同步练习册答案