分析 (1)代入a的值,求出函数f(x)的导数,根据导函数为0,即可求解函数的极值;
(2)问题转化为存在关于a的不等式,利用表达式的最值,求解a的范围.
解答 解:(1)a=1,f(x)=x2+x-lnx.定义域为x>0,
f′(x)=2x+1-$\frac{1}{x}$=$\frac{(2x-1)(x+1)}{x}$,(x>0),
由$\frac{(2x-1)(x+1)}{x}$=0,解得x=$\frac{1}{2}$,当x∈(0,$\frac{1}{2}$)时,f′(x)<0,函数是减函数,当x$>\frac{1}{2}$时,f′(x)>0,函数在增函数,x=$\frac{1}{2}$
函数f(x)取到极小值,
∴f($\frac{1}{2}$)=$\frac{3}{4}+ln2$;
(2)f′(x)=2ax+1-$\frac{1}{x}$=$\frac{2{ax}^{2}+x-1}{x}$,(x>0),y=f(x)存在单调递增区间,可知2ax2+x-1>0有解.
可得a$>\frac{1-x}{{2x}^{2}}$=$\frac{1}{{2x}^{2}}-\frac{1}{2x}$=$\frac{1}{2}$$(\frac{1}{x}-\frac{1}{2})^{2}$-$\frac{1}{8}$,当且仅当x=$\frac{1}{8}$时取等号.
∵$\frac{1}{2}$$(\frac{1}{x}-\frac{1}{2})^{2}$-$\frac{1}{8}$≥$-\frac{1}{8}$,
∴a$>-\frac{1}{8}$
实数a的取值范围:($-\frac{1}{8},+∞$).
点评 本题考查了函数的极值问题,考查函数的单调性、最值问题,导数的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维有一定的要求,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com