精英家教网 > 高中数学 > 题目详情
5.若$\overrightarrow{a}$=(sin2x,1),$\overrightarrow{b}$=(1,-cos2x),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求函数y=f(x)的最小正周期;
(2)求函数y=f(x)的单调增区间.

分析 (1)由平面向量数量积的运算及三角函数中的恒等变换应用可得函数解析式f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),利用周期公式即可得解.
(2)由2k$π-\frac{π}{2}$≤2x-$\frac{π}{4}$$≤2kπ+\frac{π}{2}$,k∈Z可解得函数y=f(x)的单调增区间.

解答 解:(1)∵f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
∴函数y=f(x)的最小正周期T=$\frac{2π}{2}=π$;
(2)由2k$π-\frac{π}{2}$≤2x-$\frac{π}{4}$$≤2kπ+\frac{π}{2}$,k∈Z可解得函数y=f(x)的单调增区间为:[k$π-\frac{π}{8}$,k$π+\frac{3π}{8}$],k∈Z.

点评 本题主要考查了三角函数中的恒等变换应用,平面向量数量积的运算,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知f(x+1)=2x2+1,则f(2)=3,f(x-1)=2x2-8x+9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)一个等比数列的第6项为$\frac{1}{96}$,公比是$\frac{1}{2}$,求它的第2项;
(2)一个等比数列的第2项为12,第3项是36,求它的第1项与第4项;
(3)一个等比数列的第1项为64,第6项是2,求它的第2项与第5项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,梯形ABCD中,AD∥BC,AD:BC=a:b,中位线EF=m,则图示MN的长是(  )
A.$\frac{m(a+b)}{a-b}$B.$\frac{m(a-b)}{a+b}$C.$\frac{m(a-b)}{2(a+b)}$D.$\frac{m(b-a)}{a+b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程y2=x表示同一条曲线的参数方程(t为参数)的是(  )
A.$\left\{\begin{array}{l}{x=si{n}^{2}t}\\{y=sint}\end{array}\right.$B.$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$
C.$\left\{\begin{array}{l}{x=\frac{1-cos2t}{1+cos2t}}\\{y=tant}\end{array}\right.$D.$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙、丙三人按顺序抽签,选其中的两人参加比赛.求:
(1)乙被选中的概率;
(2)已知甲被选中的同时乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(a-b)x2+(c-a)x+(b-c),且a>b>c.
(1)求证:方程f(x)=0总有两个实根;
(2)求不等式f(x)≤0的解集;
(3)求使f(x)>(a-b)(x-1)对3b≤2a+c总成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}中,an=n2-9n-100,则最小的项是(  )
A.第4项B.第5项C.第6项D.第4项或第5项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把语文、数学、物理三本书随机地分给甲、乙、丙三位同学.每人一本,则事件“甲同学分得语文书”与事件“乙同学分得语文书”是(  )
A.对立事件B.不可能事件
C.互斥但不对立事件D.以上答案都不对

查看答案和解析>>

同步练习册答案