精英家教网 > 高中数学 > 题目详情
13.对于函数f(x)=a+$\frac{2}{{{2^x}+1}}$(x∈R),
(1)用定义证明:f(x)在R上是单调减函数;
(2)是否存在实数a,使得f(x)是奇函数,若存在请求出a的值,若不存在请说明理由.

分析 (1)按照:取值、作差变形、判断符号下结论的步骤进行;
(2)先利用f(0)=0求出a的值,然后验证即可;

解答 解:(1)f(x)=a+$\frac{2}{{{2^x}+1}}$.
任取x1<x2,则f(x1)-f(x2
=a+$\frac{2}{{2}^{{x}_{1}}+1}$-a-$\frac{2}{{2}^{{x}_{2}}+1}$=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$.
因为y=2x是R上的增函数,且x1<x2
所以${2}^{{x}_{2}}-{2}^{{x}_{1}}$>0,所以上式>0,
所以f(x1)>f(x2).
故f(x)在R上是单调减函数.
(2)因为x∈R,所以f(0)=0,解得a=-1,
经验证a=-1时,f(-x)=-f(x)恒成立,
故a=-1即为所求.

点评 本题考查了函数的奇偶性性质,以及函数的单调性,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.过点(3,0)的l与圆x2+y2+x-6y+3=0相交于P,Q两点,且OP⊥OQ(O为原点),求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知椭圆经过点A(0,$\frac{5}{3}$)和B(1,1),求椭圆的标准方程.
(2)若抛物线y2=2px(p>0)上的一点M 到焦点及对称轴的距离分别为10和6,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.8次投篮中,投中3次,其中恰有2次连续命中的情形有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设等差数列{an}的公差为d,前n项和为Sn,若a1=d=1,则$\frac{{{S_n}+8}}{a_n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}中,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}},{a_1}=2$,则 a20=$\frac{2}{115}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下说法正确的是(  )
A.球的截面中过球心的截面面积未必最大
B.圆锥截去一个小圆锥后剩下来的部分是圆台
C.棱锥截去一个小棱锥后剩下来的部分是棱台
D.用两个平行平面去截圆柱,截得的中间部分还是圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于集合M,N,定义:M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).设集合M={y|y=x2-4x+3,x∈R},N={y|y=-2x,x∈R},则M⊕N=(  )
A.(-∞,-1)∪[0,+∞)B.[-1,0)C.(-1,0]D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程mx2+(m+1)y2=m(m+1)(m∈R)表示的曲线不可能是(  )
A.直线B.椭圆C.双曲线D.抛物线

查看答案和解析>>

同步练习册答案