精英家教网 > 高中数学 > 题目详情
将棱长为3的正四面体的各棱长三等分,经过分点将原正四面体各顶点附近均截去  一个棱长为1的小正四面体,则剩下的多面体的棱数E为    (    )
A.16B.17 C.18 D.19
截取后的几何体面F=8,V=12,由Euler公式得:E=18.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(湖南省●2010年月考)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.

(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.
                                                       
                                                       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,已知正三棱柱的底面边长是、E是、BC的中点,AE=DE
(1)求此正三棱柱的侧棱长;(2)正三棱柱表面积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,为原正方体的顶点,为原正方体一条棱的中点。在原来的正方体中,所成角的余弦值为     (   )
  
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知四棱锥P—ABCD,
底面ABCD是菱形,平面ABCD,PD=AD,点E为AB中点,点F为PD中点。  (1)证明平面PED⊥平面PAB;  (2)求二面角P—AB—F的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab是夹角为30°的异面直线,则满足条件“,且”的平面     
A.不存在 B.有且只有一对C.有且只有两对D.有无数对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,m、n,有下列四个命题:①若,则②若;③若;④若
其中不正确的命题的个数是 (    )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

斜三棱柱ABC—A1B1C1中,AA1=AC=BC=2,
,且平面ACC1A1⊥平面BCC1B1,则A1B的长度为         。m]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直三棱柱中, 
的中点,给出如下三个结论:①
③平面,其中正确结论为            (填序号)

查看答案和解析>>

同步练习册答案