精英家教网 > 高中数学 > 题目详情

【题目】极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系中的单位长度相同,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ).
(Ⅰ)求C的直角坐标方程;
(Ⅱ)直线 (t为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.

【答案】解:(Ⅰ)由ρ=2(sinθ+cosθ),两边同时乘以ρ,

得ρ2=2ρsinθ+2ρcosθ,因为ρ2=x2+y2,ρsinθ=y,ρcosθ=x,

所以曲线C的直角坐标方程为:x2+y2=2y+2x,

整理得(x﹣1)2+(y﹣1)2=2…

(Ⅱ)将直线的参数方程 代入圆的方程,

整理得 ,由韦达定理可得:

由直线的参数方程的几何意义,

得: ….


【解析】(1)根据极坐标方程转化为直角坐标方程的方法可得答案,(2)将直线的参数方程代入圆的直角坐标方程,结合t的几何意义可得值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=m,其前n项和为Sn , 且满足Sn+Sn+1=3n2+2n,若对n∈N+ , an<an+1恒成立,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,ABCD为直角梯形,AB∥CD,∠DAB=90°,四边形ADEF为等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.

(1)求证:平面ABCD⊥平面ADEF;
(2)求直线CF与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边长分别为a,b,c,且
(1)求角B的大小;
(2)若 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 没有零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延迟退休”的人数

15

5

15

28

17


(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

45岁以下

45岁以上

总计

支持

不支持

总计


(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828


查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12个不同的根,则实数t的取值范围为(  )
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是边长为2的正三角形,AB=BD= ,PB=3.

(1)求证:平面PAD⊥平面ABCD;
(2)设Q是棱PC上的点,当PA∥平面BDQ时,求二面角A﹣BD﹣Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角, ,平面ABCD⊥平面ABFE.

(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

同步练习册答案