精英家教网 > 高中数学 > 题目详情
如图所示,F1F2分别为椭圆C的左、右两个焦点,AB为两个顶点,该椭圆的离心率为的面积为.

(1)求椭圆C的方程和焦点坐标;
(2)作与AB平行的直线交椭圆于PQ两点,,求直线的方程.
(1);(2)

试题分析:(1)由离心率的面积为.易得的值.(2)由两点坐标知,设出直线的方程为,与椭圆方程联立,设出两点坐标,利用根与系数的关系,结合求出的值.则方程可得.
试题解析:由题设知:,又,将代入,
得到:,即,所以
故椭圆方程为,                      4分
焦点F1F2的坐标分别为(-1,0)和(1,0),  5分
(2)由(1)知

∴设直线的方程为,              7分

,               9分
P (x1y1),Q (x2y2),则
,          10分
,11分
 
  
解之,(验证判别式为正),所以直线的方程为14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足为坐标原点),当时,求实数的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设为坐标原点,点分别在椭圆上,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.

(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面坐标系xOy中,抛物线的焦点F与椭圆的左焦点重合,点A在抛物线上,且,若P是抛物线准线上一动点,则的最小值为(   )
A.6B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2是椭圆=1的左、右两个焦点,若椭圆上满足PF1⊥PF2的点P有且只有两个,则离心率e的值为(   )
A.B.C.D..

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是________.

查看答案和解析>>

同步练习册答案