精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求实数a的取值范围.

【答案】
(1)解:由f(x)=lg(x﹣1)+ 可得,x﹣1>0且2﹣x≥0,

解得1<x≤2,故A={x|1<x≤2};

若a= ,则y=2x+ ,当x≤0时,0<2x≤1, <2x+

故B={y| <y≤ };

所以A∪B={x|1<x≤ }.


(2)解:当x≤0时,0<2x≤1,a<2x+a≤a+1,故B={y|a<y≤a+1},

因为A∩B=,A={x|1<x≤2},所以a≥2或a+1≤1,

即a≥2或a≤0,

所以实数a的取值范围为a≥2或a≤0.


【解析】(1)化简集合A,B,再由并集的含义即可得到;(2)运用指数函数的单调性求出集合B,由A∩B=,可得a 的范围.
【考点精析】通过灵活运用集合的并集运算和集合的交集运算,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x﹣3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)的图象关于点(1,0)对称,且当x∈[1,2]时,f(x)=﹣2x+2,若函数y=f(x)﹣loga(|x|+1)恰好有8个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;
(Ⅱ)若函数f(x)的图象的一条对称轴为 ,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+2x.
(1)若函数f(x)在R上是增函数,求实数a的取值范围;
(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方;
(3)若存在a∈[﹣4,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若| |=1,| |=m,| + |=2.
(1)若| +2 |=3,求实数m的值;
(2)若 + 的夹角为 ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题
(1)已知函数f(x)=2x+ (x>0),证明函数f(x)在(0, )上单调递减,并写出函数f(x)的单调递增区间;
(2)记函数g(x)=a|x|+2ax(a>1) ①若a=4,解关于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin2x的图象向左平移 个单位长度,则平移后的图象的对称轴为(
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知侧棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,点D是AB的中点.

(1)求证:AC⊥BC;
(2)求证:AC1∥平面CDB1

查看答案和解析>>

同步练习册答案