精英家教网 > 高中数学 > 题目详情
1.椭圆4x2+9y2=36的焦点坐标是(  )
A.(0,±3)B.(0,±$\sqrt{5}$)C.(±3,0)D.(±$\sqrt{5}$,0)

分析 化椭圆方程为标准方程,求出a2,b2的值,结合隐含条件求得c,则椭圆的焦点坐标可求.

解答 解:由4x2+9y2=36,得$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$.
∴椭圆是焦点在x轴上的椭圆,
且a2=9,b2=4,
∴c2=a2-b2=5,c=$\sqrt{5}$.
∴椭圆4x2+9y2=36的焦点坐标是(±$\sqrt{5}$,0).
故选:D.

点评 本题考查椭圆的简单性质,考查了椭圆的标准方程,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2x+ax+2.
(1)当a=0时,求函数f(x)的零点;
(2)当a=1时,判断函数f(x)在定义域内的零点的个数并给出代数证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y={log_2}(5-4x-{x^2})$的递增区间是(  )
A.(-∞,2]B.(-5,-2]C.[-2,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{m}$=$(\sqrt{3},1)$,$\overrightarrow{n}$=(0,-1),$\overrightarrow{k}$=$(t,\sqrt{3})$,若$\overrightarrow{m}$-2$\overrightarrow{n}$与$\overrightarrow{k}$共线,则t的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式|2x+1|-|x-4|≥m恒成立,则实数m的取值范围是(  )
A.(-∞,-1]B.(-∞,-$\frac{5}{2}$]C.(-∞,-$\frac{9}{2}$]D.(-∞,-5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:
①中位数为84;
②众数为85;
③平均数为85; 
④极差为12;
其中,正确说法的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在边长为1的正方体ABCD-A1B1C1D1中,O、E分别是A1C、BC的中点,P是线段A1O上一动点.
(1)求直线PA1与平面AB1P所成角的正弦的取值范围;
(2)当直线PA1与平面AB1P所成的角最大时,在平面A1CD上是否存在一点Q,使得点Q同时满足下列两个条件:①EQ⊥AP;②|D1Q|=$\frac{\sqrt{5}}{2}$,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的左、右焦点分别为F1,F2,上顶点为A,过F1的直线l:x-y+2=0与y轴交于点M,满足|OM|=|OA|2(O为坐标原点)且,直线l与直线l′:x-y+m=0(m<0)之间的距离为$\frac{5\sqrt{2}}{4}$.
(1)求椭圆C的方程:
(2)在直线l′上是否存在点P,满足|PF1|=3|PF2|?若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax+(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t-2x)>0恒成立的t的取值范围;
(3)若f(1)=$\frac{3}{2}$,设g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值为-1,求m的值.

查看答案和解析>>

同步练习册答案