精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,证明:

(2)若只有一个极值点,求的取值范围,并证明:.

【答案】(1)见解析;(2)见解析

【解析】试题分析:(1)构造函数利用导数易得,即证得结论,(2)研究导函数零点,先求导数,再根据导函数零点,根据a的正负分类讨论:当时,单调,再根据零点存在定理得有且仅有一个零点;当时,先增后减,再根据零点存在定理得有且仅有两个零点;最后研究极值点函数值范围:继续利用导数研究函数单调性,根据单调性确定取值范围.

试题解析:(1)∵,∴要证,即证.

单调递増;单调递减,

成立,也即.

(2)设.

①当时,令得;.

单调递増;单调递减.

恒成立,无极值;

,即,∴.

,∴由根的存在性定理知,上必有一根.

,下证:当.

,∴.

时,单调递増;当时,单调递减,

∴当时,

∴当时,,即

由根的存在性定理知,上必有一根.

此时上有两个极值点,故不符合题意.

②当时,恒成立,单调递增,

时,

时,,下证:当时,.

,∵上单调递减,∴

∴当时,

∴由根的存在性定理知,上必有一根.

有唯一的零点只有一个极值点,且,满足题意.

.

由题知,又,∴

.

单调递减,

,∴成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某化工厂生产甲、乙两种肥料,生产1车皮甲种肥料能获得利润10000元,需要的主要原料是磷酸盐4吨,硝酸盐8吨;生产1车皮乙种肥料能获得利润5000元,需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存有磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种肥料.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值为A,若存在实数x1 , x2 , 使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+
(1)若函数有两个极值点,求实数a的取值范围;
(2)对所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x、y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:

(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;

(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 图象过点(﹣1,2),且在该点处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

同步练习册答案