【题目】已知函数.
(1)若,证明:;
(2)若只有一个极值点,求的取值范围,并证明:.
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)构造函数利用导数易得,即证得结论,(2)研究导函数零点,先求导数,再根据导函数零点,根据a的正负分类讨论:当时,单调,再根据零点存在定理得有且仅有一个零点;当时,先增后减,再根据零点存在定理得有且仅有两个零点;最后研究极值点函数值范围:继续利用导数研究函数单调性,根据单调性确定取值范围.
试题解析:(1)∵,∴要证,即证.
设,
令得,
且,单调递増;,单调递减,
∴,
即成立,也即.
(2)设,.
①当时,令得;.
,单调递増;,单调递减.
若,恒成立,无极值;
若,即,∴.
∵,∴由根的存在性定理知,在上必有一根.
∵,下证:当,.
令,∴.
当时,单调递増;当时,单调递减,
∴当时,,
∴当时,,即,
由根的存在性定理知,在上必有一根.
此时在上有两个极值点,故不符合题意.
②当时,恒成立,单调递增,
当时,;
当时,,下证:当时,.
令,∵在上单调递减,∴,
∴当时,,
∴由根的存在性定理知,在上必有一根.
即有唯一的零点,只有一个极值点,且,满足题意.
∴.
由题知,又,∴,
∴.
设,,
当,单调递减,
∴,∴成立.
科目:高中数学 来源: 题型:
【题目】某化工厂生产甲、乙两种肥料,生产1车皮甲种肥料能获得利润10000元,需要的主要原料是磷酸盐4吨,硝酸盐8吨;生产1车皮乙种肥料能获得利润5000元,需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存有磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种肥料.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值为A,若存在实数x1 , x2 , 使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+
(1)若函数有两个极值点,求实数a的取值范围;
(2)对所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:,,,
(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 图象过点(﹣1,2),且在该点处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(3)若为定义域上的“局部奇函数”,求实数的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com