精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

(I)不垂直.理由见解析;(II)详见解析;(III)二面角P-CD-A的大小为600.

解析试题分析:(I)首先结合条件凭借自己的空间想象力判断.在本题中,PC=PD,则∠PCD=∠PDC不为直角,由此可知,直线CD与平面PAD不可能垂直.(II)证面面垂直,首先考虑证哪条线垂直哪个面.结合题设PA=PB取AB的中点E ,则PE⊥AB.再结合结论可知必有PE⊥平面ABCD,所以我们就考虑证明PE⊥平面ABCD.
(III)取AB、CD的中点有E、F,连结PE,PF,EF,则易得∠PFE即为二面角P-CD-A的平面角,且三角形PEF是一个直角三角形. 利用题设找到边与边的关系,在三角形PEF中即可求得∠PFE的大小.
试题解析:(I)不垂直
假设直线CD与平面PAD垂直,则CD⊥PD。
而在△PCD中,由PC=PD得∠PCD=∠PDC
∴∠PDC<900,这与CD⊥PD矛盾,
因此, 直线CD与平面PAD不垂直。
(II)取AB、CD的中点有E、F,连结PE,PF,EF,
由PA=PB,PC="PD," 得  PE⊥AB,PF⊥CD.
∵EF为直角梯形的中位线  ∴EF⊥CD、
又PFEF=F    ∴CD⊥平面PEF
由PE平面PEF   ∴CD⊥PE
又梯形的两腰AB与CD必相交,∴PE⊥平面ABCD
又PE平面PAB    ∴平面PAB⊥平面ABCD
(III)∠PFE即为二面角P-CD-A的平面角
作EG⊥BC于G,连PG。由三垂线定理得BC⊥PG,则∠PGE为二面角P-BC-A的平面角即∠PGE=600
由已知得EF=(AD+BC)=,EG=CF=CD,∴EF=EG
   ∴∠PFE=∠PGE=600
即二面角P-CD-A的大小为600
考点:1、空间线面垂直关系;2、二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示的四棱锥中,底面为菱形,平面 的中点,

求证:(I)平面; (II)平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.

(I)求证:BC∥平面EFG;
(II)求证:DH平面AEG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.

(1)求证:平面平面
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是(     )

A.
B.三棱锥的体积为定值
C.二面角的大小为定值
D.异面直线所成角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

查看答案和解析>>

同步练习册答案