如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.
(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
(I)不垂直.理由见解析;(II)详见解析;(III)二面角P-CD-A的大小为600.
解析试题分析:(I)首先结合条件凭借自己的空间想象力判断.在本题中,PC=PD,则∠PCD=∠PDC不为直角,由此可知,直线CD与平面PAD不可能垂直.(II)证面面垂直,首先考虑证哪条线垂直哪个面.结合题设PA=PB取AB的中点E ,则PE⊥AB.再结合结论可知必有PE⊥平面ABCD,所以我们就考虑证明PE⊥平面ABCD.
(III)取AB、CD的中点有E、F,连结PE,PF,EF,则易得∠PFE即为二面角P-CD-A的平面角,且三角形PEF是一个直角三角形. 利用题设找到边与边的关系,在三角形PEF中即可求得∠PFE的大小.
试题解析:(I)不垂直
假设直线CD与平面PAD垂直,则CD⊥PD。
而在△PCD中,由PC=PD得∠PCD=∠PDC
∴∠PDC<900,这与CD⊥PD矛盾,
因此, 直线CD与平面PAD不垂直。
(II)取AB、CD的中点有E、F,连结PE,PF,EF,
由PA=PB,PC="PD," 得 PE⊥AB,PF⊥CD.
∵EF为直角梯形的中位线 ∴EF⊥CD、
又PFEF=F ∴CD⊥平面PEF
由PE平面PEF ∴CD⊥PE
又梯形的两腰AB与CD必相交,∴PE⊥平面ABCD
又PE平面PAB ∴平面PAB⊥平面ABCD
(III)∠PFE即为二面角P-CD-A的平面角
作EG⊥BC于G,连PG。由三垂线定理得BC⊥PG,则∠PGE为二面角P-BC-A的平面角即∠PGE=600
由已知得EF=(AD+BC)=,EG=CF=CD,∴EF=EG
而 ∴∠PFE=∠PGE=600
即二面角P-CD-A的大小为600。
考点:1、空间线面垂直关系;2、二面角.
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.
(I)求证:BC∥平面EFG;
(II)求证:DH平面AEG.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.
(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在直角梯形中,,,,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.
(1)求证:平面平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.
(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com