精英家教网 > 高中数学 > 题目详情

【题目】根据下列各条件写出直线方程,并化为一般式.

1)斜率是,经过点

2)经过点,与直线垂直;

3)在轴和轴上的截距分别为2.

【答案】1,一般式;(2,一般式;(3,一般式

【解析】

(1)利用直线的点斜式方程直接书写,然后再化成一般式即可得出答案;(2)由直线垂直可先求出所求直线的斜率,然后利用点斜式方程再化成一般式方程即可得出答案;(3)利用直线方程的截距式书写直线方程,然后再化成一般式即可得出答案.

(1)由直线方程的点斜式方程可得,化成一般式为:

(2)由题意所求直线和直线垂直,可得所求直线的斜率为1,则由直线方程的点斜式方程可得,化成一般式为:

(3)由直线在轴和轴上的截距分别为-22,则利用直线方程的截距式方程可得,化为一般式为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知fxsin2x).

1)求函数fx)的最小正周期;

2)求函数fx)的最大值,并写出取最大值时自变量x的集合;

3)求函数fx)在x[0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+exg(x)=2xax3a为实常数.

(1)求g(x)的单调区间;

(2)当a=-1时,证明:存在x0∈(0,1),使得yf(x)和yg(x)的图象在xx0处的切线互相平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为,且中只有一个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A市积极倡导学生参与绿色环保活动,其中代号为环保卫士——12369的绿色环保活动小组对2014年1月——2014年12月(一年)内空气质量指数进行监测,下表是在这一年随机抽取的100天的统计结果:

指数API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空气质量

轻微污染

轻度污染

中度污染

中重度污染

重度污染

天数

4

13

18

30

9

11

15

(1)若A市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数(记为t)的关系

为:,在这一年内随机抽取一天,估计该天经济损失元的概率;

(2)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成列联表,并判断是

否有的把握认为A市本年度空气重度污染与供暖有关?

非重度污染

重度污染

合计

供暖季

非供暖季节

合计

100

下面临界值表供参考

015

010

005

0025

0010

0005

0001

2072

2706

3841

p>5024

6635

7879

10828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线两点,过点且与直线垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空集合关于运算满足:①对任意,都有;②存在使得对于一切都有,则称是关于运算的融洽集,现有下列集合与运算:①是非负整数集,:实数的加法;②是偶数集,:实数的乘法;③是所有二次三项式构成的集合,:多项式的乘法; ④:实数的乘法;其中属于融洽集的是________(请填写编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网+交通模式的迅猛发展,共享自行车在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用户编号

评分

用户编号

评分

用户编号

评分

用户编号

评分

01

78

11

88

21

79

31

93

02

73

12

86

22

83

32

78

03

81

13

95

23

72

33

75

04

92

14

76

24

74

34

81

05

95

15

97

25

91

35

84

06

85

16

78

26

66

36

77

07

79

17

88

27

80

37

81

08

84

18

82

28

83

38

76

09

63

19

76

29

74

39

85

10

86

20

89

30

82

40

89

现用随机数法读取用户编号,且从第2行第6列的数开始向右读,从40名用户中抽取容量为10的样本.(下面是随机数表第1行第至第5行)

95 33 95 22 00 18 74 72 00 18 38 79 58 69 32

81 76 80 16 92 04 80 44 25 39 91 03 69 79 83

54 31 62 27 32 94 07 53 89 35 96 35 23 79 18

05 98 90 07 35 46 40 62 98 80 54 97 20 56 95

1)请你列出抽到的10个样本的评分数据;

2)计算所抽到的10个样本的均值和方差

3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为”.试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为的用户所占的百分比是多少?(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于直线对称,且圆心在轴上.

(1)求的标准方程;

(2)已经动点在直线上,过点的两条切线,切点分别为.

①记四边形的面积为,求的最小值;

②证明直线恒过定点.

查看答案和解析>>

同步练习册答案