精英家教网 > 高中数学 > 题目详情
14.设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,点F1、F2为其左、右焦点,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R).
(1)求直线l的普通方程和曲线C的参数方程;
(2)求曲线C上的点到直线l的最大距离.

分析 (1)直线l中消去参数,能求出直线l的普通方程,由ρsinθ=y,ρcosθ=x,先求出曲线C的直角坐标方程,由此能求出曲线C的参数方程.
(2)设曲线C上的点P(2cosθ,$\sqrt{3}sinθ$),求出曲线C上的点P到直线l的距离,利用三角函数的性质能求出曲线C上的点到直线l的最大距离.

解答 解:(1)∵直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R),
∴直线l中消去参数,得直线l的普通方程为l:x-y-1=0,
∵曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,
∴3ρ2cos2θ+4ρ2sin2θ=12,
∴曲线C的直角坐标方程为3x2+4y2=12,即$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
∴曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,(θ为参数).(5分)
(2)设曲线C上的点P(2cosθ,$\sqrt{3}sinθ$),
则曲线C上的点P到直线l的距离d=$\frac{|2cosθ-\sqrt{3}sinθ-1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}|\sqrt{7}sin(θ+α)-1|$≤$\frac{\sqrt{14}+\sqrt{2}}{2}$.
∴曲线C上的点到直线l的最大距离为$\frac{\sqrt{14}+\sqrt{2}}{2}$.(10分)

点评 本题考查曲线的极坐标方程、直角坐标方程、参数方程的互化,考查点到直线的距离的最大值的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.tan(-165°)的值是(  )
A.2+$\sqrt{3}$B.-2-$\sqrt{3}$C.2-$\sqrt{3}$D.$\sqrt{3}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,已知圆C经过点P($\sqrt{2}$,$\frac{π}{4}$),圆心为直线ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$与极轴的交点.
(1)求圆C的极坐标方程;
(2)求直线θ=$\frac{π}{3}$(ρ∈R)被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC,$AC=BC=\sqrt{2}a$,∠ACB=90°,过点A,B作线段AN,BM分别与△ABC所在的平面垂直,且AN=AB=2BM,E,F,P分别是线段NC,AB,MC的中点.
(Ⅰ)求证:EF∥平面MBC;
(Ⅱ)求异面直线AB与ME所成角的余弦值;
(Ⅲ)求四面体PBMF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是一个空间几何体的三视图,则该几何体的体积为(  )
A.12B.24C.48D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知曲线C的极坐标方程是ρ2-4ρcosθ-2psinθ=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在平面直角坐标系中,直线经过点P(1,2),倾斜角为$\frac{π}{6}$.
(1)写出曲线C的直角坐标方程和直线的参数方程;
(2)设直线与曲线C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若曲线C满足下列两个条件:
(i)存在直线m在点P(x0,y0)处与曲线C相切;
(ii)曲线C在点P附近位于直线m的两侧.则称点P为曲线C的“相似拐点”.
下列命题不正确的是(  )
A.点P(0,0)为曲线C:y=x3的“相似拐点”
B.点P(0,0)为曲线C:y=sinx的“相似拐点”
C.点P(0,0)为曲线C:y=tanx的“相似拐点”
D.点P(1,0)为曲线C:y=lnx的“相似拐点”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x+$\frac{1}{x}$(x≠0)是(  )
A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱A1B1,BB1的中点,则D1E与CF的延长线交于一点,此点在直线(  )
A.AD上B.B1C1C.A1D1D.BC上

查看答案和解析>>

同步练习册答案