精英家教网 > 高中数学 > 题目详情
如图所示,三棱柱ABC-A1B1C1的底面是正三角形,侧棱垂直于底面,D是AC的中点.
(1)求证:B1C平面A1BD;
(2)求证:平面BDA1⊥平面ACC1A1
(1)连结AB1,交A1B于点E,连结OE
∵四边形AA1B1B为平行四边形,
∴E为AB1的中点,
∵D是AC的中点,可得DE为△AB1C的中位线,
∴DEB1C,
∵DE?平面A1BD,B1C?平面A1BD,
∴B1C平面A1BD;
(2)∵△ABC中,AB=BC,AD=DC,∴BD⊥AC,
∵AA1⊥平面ABC,BD?平面ABC,∴BD⊥AA1
∵AC、AA1是平面ACC1A1内的相交直线,
∴BD⊥平面ACC1A1
∵BD?平面A1BD,
∴平面A1BD⊥平面ACC1A1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD为菱形,且∠BAD=60°,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.
(1)求证:BG⊥面PAD;
(2)E是BC的中点,在PC上求一点F,使得PG面DEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的三视图如下图所示,其中俯视图为正三角形,设D为AA1的中点.
(Ⅰ)作出该几何体的直观图并求其体积;
(Ⅱ)求证:平面BB1C1C⊥平面BDC1
(Ⅲ)BC边上是否存在点P,使AP平面BDC1?若不存在,说明理由;若存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知AB⊥平面BCE,CDab,△BCE是正三角形,AB=BC=2CD.
(Ⅰ)在线段BE上是否存在一点F,使CF平面ADE?
(Ⅱ)求证:平面ADE⊥平面ABE;
(Ⅲ)求二面角A-DE-B的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.
求证:
(1)平面AB1F1平面C1BF;
(2)平面AB1F1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知AB⊥平面BCD,BC⊥CD.请指出图中所有互相垂直的平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.
(Ⅰ)求证:面PDE⊥面PAB;
(Ⅱ)求证:BF面PDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,定义两点之间的“直角距离”为.现有下列命题:
①已知P (1,3),Q() (),则d(P,Q)为定值;
②原点O到直线上任一点P的直角距离d (O, P)的最小值为;
③若表示P、Q两点间的距离,那么
④设A(x,y)且,若点A是在过P (1,3)与Q(5,7)的直线上,且点A到点P与Q的“直角距离”之和等于8,那么满足条件的点A只有5个.
其中的真命题是               .(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案