精英家教网 > 高中数学 > 题目详情

【题目】一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球互相独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:

所取球的情况

三个球均为红色

三个球均为不同色

恰有两球为红色

其他情况

所获得的积分

180

90

60

0

(1)求一次摸奖中,所取的三个球中恰有两个是红球的概率;

(2)设一次摸奖中,他们所获得的积分为的分布列及均值(数学期望)

(3)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.

【答案】(1);(2)分布列见解析,;(3)

【解析】

试题分析:(1)所取三个球恰有两个是红球,包含两类基本事件,即父亲取出两个红球,儿子取出一个不是红球;父亲取出两球为一红一白,儿子取出一球为红球,然后利用古典概型概率计算公式及互斥事件的加法公式求得答案;(2)求出的取值,再求出取各个值的概,列出分布列,再由期望公式求期望3)由二项分布的定义知,三次摸奖中恰好获得个积分的次数,然后结合互斥事件的概率公式求得答案.

试题解析:

(1)设所取三个球恰有两个是红球为事件则事件包含两类基本事件父亲取出两个红球儿子取出一个不是红球其概率

父亲取出两球为一红一白,儿子取出一球为红色,其概率为

(2)可以取180,90,60,0,取各个值的概率分别为:

所求分布列为:

180

90

60

0

随机变量的期望

(3)由二项分布的定义知,三次摸奖中恰好获得60个积分的次数

故所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)求的单调区间;

2)若为整数, 且当,, 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1的切线与直线平行,求的值;

2不等式对于的一切值恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,面为矩形,的中点,交于点.

证明:

,求BC与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=x﹣a2lnx,aR.

I若x=e是y=fx的极值点,求实数a的值;

若函数y=fx﹣4e2只有一个零点,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)如是函数的极值点,求实数的值并讨论的单调性

(2)若是函数的极值点,且恒成立,求实数的取值范围(注:已知常数满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是.每生产一件服装,成本增加100元,生产服装的收入函数是,记分别为每天生产服装的利润和平均利润

1时,每天生产量为多少时,利润有最大值;

2每天生产量为多少时,平均利润有最大值,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆轴,轴的正半轴分别交于两点,原点到直线的距离为,该椭圆的离心率为.

(1)求椭圆的方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获(单位:)与它的相近作物株数之间的关系如下表所示

1

2

3

4

51

48

45

42

这里,两株作物相近是指它们之间的直线距离不超过1米

(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好相近的概率;

(2)在所种作物中堆积选取一株,求它的年收获量的分布列与数学期望.

查看答案和解析>>

同步练习册答案