精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I)求函数f(x)的单调区间;

(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数),求的最大值.

【答案】I)增区间,减区间;(I

【解析】

I)求导数,由于分母为正,因此对分子(设其为)再求导,以确定正负,仍不能确定其零点、极值、正负,因此再一次求导,可确定出的最值与单调性,从而可确定的单调性与零点,最终可确定的单调区间;

II)分离常数,得,为此求出函数上的最小值.这可利用导数知识求解.

函数的定义域是

,则

,则

时,上为增函数,

时,上为减函数,

处取得极大值,而

,函数上为减函数.

于是当时,,当时,

∴当时,为增函数,

时,为减函数,

故函数的增区间为,减区间为

II)不等式等价于不等式,由可得:

由(I)知,即

,于是上为减函数,

故函数上的最小值为

所以的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,下列命题:

的定义域为

是奇函数;

上单调递增;

④若实数满足,则

⑤设函数在上的最大值为,最小值为,则.

其中真命题的序号是______.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着新政策的实施,海淘免税时代于201648日正式结束,新政策实施后,海外购物的费用可能会增加.为了解新制度对海淘的影响,某网站调查了喜欢海淘的1000名网友,其态度共有两类:第一类是会降低海淘数量,共有400人,第二类是不会降低海淘数量,共有600人,若从这1000人中按照分层抽样的方法抽取10人后进行打分,其打分的茎叶图如下图所示,图中有数据缺失,但已知“第一类”和“第二类”网民打分的均值相等,则“第一类”网民打分的方差为(

A.159B.179C.189D.209

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生自主创业,经销某种农产品,在一个销售季度内,每售出该产品获利润800元,未售出的产品,每亏损200.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.该大学生为下一个销售季度购进了该农产品.(单位:)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内经销该农产品的利润.

1)将表示为的函数;

2)根据直方图估计利润不少于94000元的概率;

3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若,则取,且的概率等于需求量落入的频率),求的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了200位高三学生的成绩进行统计分析得到如图所示频率分布直方图:

1)计算这些学生成绩的平均值及样本方差(同组的数据用该组区间的中点值代替);

2)由频率分布直方图认为,这次成绩X近似服从正态分布,其中μ近似为样本平均数,近似为样本方差.

(i);

(ii)从高三学生中抽取10位学生进行面批,记表示这10位学生成绩在的人数,利用(i)的结果,求数学期望.

附:;

,则,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象为C,下面结论正确的是( )

A.函数f(x)的最小正周期是2π.

B.函数f(x)在区间上是递增的

C.图象C关于点对称

D.图象C由函数g(x)=sin2x的图象向左平移个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}满足:对任意nN*,均有an=bn+cn成立,且{bn},{cn}都是等比数列,则称(bn,cn)是数列{an}的一个等比拆分.

1)若an=2n,且(bn,bn+1)是数列{an}的一个等比拆分,求{bn}的通项公式;

2)设(bn,cn)是数列{an}的一个等比拆分,且记{bn},{cn}的公比分别为q1,q2;

①若{an}是公比为q的等比数列,求证:q1=q2=q;

②若a1=1,a2=2,q1q2=﹣1,且对任意nN*,an+13<anan+1an+2+an+2an恒成立,求a3的取值范围.

查看答案和解析>>

同步练习册答案