精英家教网 > 高中数学 > 题目详情
若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是(  )
A、在圆上B、在圆外C、在圆内D、以上都有可能
分析:根据直线与圆的位置关系,得到圆心到直线的距离大于半径,得到关于a,b的关系式,这个关系式正好是点到圆心的距离,得到圆心与点到距离小于半径,得到点在圆的内部.
解答:解:∵直线ax+by+1=0与圆x2+y2=1相离,
1
a2+b2
>1

a2+b2
<1

∴点P(a,b)到圆心的距离小于半径,
∴点在圆内,
故选C.
点评:本题考查直线与圆的位置关系和点与圆的位置关系,本题解题的关键是正确利用点到直线的距离公式,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则
1
a
+
4
b
的最小值为(  )
A、8B、12C、16D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA长为半径的圆的面积的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)设A(1,-1),B(0,1),若直线ax+by=1与线AB(包括端点)有公共点,则a2+b2的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+by=1的法向量为(1,2),则直线bx-3ay+5=0的倾斜角为
arctan
1
6
arctan
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+by=1与圆x2+y2=1相切于第一象限,则实数
1
a
+
1
b
的最小值是
2
2
2
2

查看答案和解析>>

同步练习册答案