精英家教网 > 高中数学 > 题目详情
13.“3<m<7”是“方程$\frac{{x}^{2}}{7-m}$+$\frac{{y}^{2}}{m-3}$=1的曲线是椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分条件又不必要条件

分析 根据椭圆的方程以及充分条件和必要条件的定义进行判断即可.

解答 解:若方程$\frac{{x}^{2}}{7-m}$+$\frac{{y}^{2}}{m-3}$=1的曲线是椭圆,
则$\left\{\begin{array}{l}{7-m>0}\\{m-3>0}\\{7-m≠m-3}\end{array}\right.$,即$\left\{\begin{array}{l}{m<7}\\{m>3}\\{m≠5}\end{array}\right.$,即3<m<7且m≠5,
即“3<m<7”是“方程$\frac{{x}^{2}}{7-m}$+$\frac{{y}^{2}}{m-3}$=1的曲线是椭圆”的必要不充分条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据椭圆方程的定义求出m的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≤0}\\{-{x}^{2}-2x+3,x>0}\end{array}$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A.(-2,0)B.(-∞,0)C.(0,2)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:“双曲线$\frac{y^2}{3}-\frac{x^2}{m}=1$的离心率$e∈({\sqrt{2},+∞})$”,命题q:“$\frac{{2{x^2}}}{m}+\frac{y^2}{m-2}=1$是焦点在x轴上的椭圆方程”.若命题“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知球O有个内接正方体,且球O的表面积为36π,则正方体的边长为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知平面内一动点M到点F(1,0)距离比到直线x=-3的距离小2.设动点M的轨迹为C.
(1)求曲线C的方程;
(2)若过点F的直线l与曲线C交于A、B两点,过点B作直线:x=-1的垂线,垂足为D,设A(x1,y1),B(x2,y2).
求证:①x1•x2=1,y1•y2=-4;      ②A、O、D三点共线 (O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,x),若$\overrightarrow a$⊥$\overrightarrow{b}$,则 x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.是否存在实数 a,使函数f(x)=cos2x+2asinx+3a-1在闭区间上的最大值为 4,若存在,则求出对应的 a 值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-$\frac{1}{2}{x^2}$,g(x)=$\frac{1-m}{2}{x^2}$+x,m∈R,令F(x)=f(x)+g(x).
(1)求函数f(x)的单调递增区间;
(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值;
(3)若m=-1,且正实数x1,x2满足F(x1)=-F(x2),求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点(x,y)满足$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤3\end{array}\right.$,则x2+y2-8x-10y的取值范围为[-23,-16].

查看答案和解析>>

同步练习册答案