精英家教网 > 高中数学 > 题目详情

【题目】如图,已知长方体的长和宽都是cm,高是4 cm.

(1)求BCAC′所成的角的度数.

(2)求AA′和BC′所成的角的度数.

【答案】(1);(2)

【解析】试题分析:(1根据长方体的性质可得,所以所成的角,由正方形的性质可得从而可得结果;(2长方体中, ,所以所成的角,利用直角三角形的性质可得所以所成的角为.

试题解析:(1)在长方体中,BCBC′,所以∠ACB′为BCAC′所成的角,因为AB′=BC′=cm,∠ABC′=90°,所以∠ACB′=45°,所以BCAC′所成的角为45°.

(2)在长方体中,AA′∥BB′,所以∠CBB′为AA′与BC′所成的角,因为BB′=4 cm,BC′= cm,所以∠CBB′=60°,所以AA′和BC′所成的角为60°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 ()的短轴端点, 分别是圆与椭圆上任意两点且线段长度的最大值为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作圆的一条切线交椭圆 两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本,对高一年级的100名学生的成绩进行统计,并按 分组,得到成绩分布的频率分布直方图(如图)。

(1)若规定60分以上(包括60分)为合格,计算高一年级这次竞赛的合格率;

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;

(3)若高二年级这次竞赛的合格率为,由以上统计数据填写下面列联表,并问是否有的把握认为“这次知识竞赛的成绩与年级有关”。

高一

高二

合计

合格人数

不合格人数

合计

附:参考数据与公式

高一

高二

合计

合格人数

a

b

a+b

不合格人数

c

d

c+d

合计

a+c

b+d

n

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条直线l12x-y+a =" 0" (a0),直线l2-4x+2y+1 = 0和直线l3x+y-1= 0,且l1l2的距离是

1)求a的值;

2)能否找到一点P,使得P点同时满足下列三个条 件:

①P是第一象限的点;

②P 点到l1的距离是P点到l2的距离的

③P点到l1的距离与P点到l3的距离之比是.若能,求P点坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为为圆心4为半径;又直线的极坐标方程为

(Ⅰ)求直线和圆的普通方程;

试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(Ⅰ)求的值域 ;

(Ⅱ)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)3ax22bxcabc0f(0)>0f(1)>0,证明a>0,并利用二分法证明方程f(x)0在区间[0,1]内有两个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设 表示学生注意力指标,该小组发现 随时间 (分钟)的变化规律( 越大,表明学生的注意力越集中)如下: ,且

若上课后第 分钟时的注意力指标为 ,回答下列问题:

(1)求 的值;

(2)上课后第 分钟时和下课前 分钟时比较,哪个时间注意力更集中?并请说明理由

(3)在一节课中,学生的注意力指标至少达到 的时间能保持多长?

查看答案和解析>>

同步练习册答案