精英家教网 > 高中数学 > 题目详情

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.

(1)根据三视图还原几何体,并能结合向量的知识建立空间直角坐标系,借助于法向量来得到证明。
(2)对于线面的垂直的证明,一般通过线线垂直的证明来得到线面垂直。
(3)

解析试题分析:解:(1)证明:该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
两两互相垂直。以分别为轴建立空间直角坐标系,则 ,   2分
,∴

  4分
(2)
,又
           8分
(3)设上一点,的中点,
设平面的一个法向量为,则有
,则有
,得
,…10分
//平面,于是
解得:                                  12分
平面//平面,此时
                           14分
(注:此题用几何法参照酌情给分)
考点:空间中点线面的位置关系
点评:主要是考查了空间中的线面的平行和垂直的证明,熟练的掌握判定定理和性质定理是结题的关键,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.

(1)求证:BC⊥平面ACFE;  
(2)若M为线段EF的中点,设平面MAB与平面FCB所成角为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=

(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,的上一点,且为PC的中点.

(Ⅰ)求证:平面AEC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.

(1)求证:BCSC;
(2) 设M为棱SA中点,求异面直线DMSB所成角的大小
(3) 求面ASD与面BSC所成二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形中,为正三角形,交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内.

(Ⅰ)求证:平面
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB为等边三角形。(12分)

(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

同步练习册答案