精英家教网 > 高中数学 > 题目详情
已知实数x,y满足条件,则z=x+2y的最大值为   
【答案】分析:先根据约束条件画出可行域,设z=x+2y,再利用z的几何意义求最值,只需求出直线z=x+2y过可行域内的点B时,从而得到z值即可.
解答:解:先根据约束条件画出可行域,设z=x+2y,
将最大值转化为y轴上的截距,
得B(2,2).
当直线z=x+2y经过点B( 2,2)时,z最大,
数形结合,将点B的坐标代入z=x+2y得
z最大值为:6,
故答案为:6.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x、y满足
x-y+2≥0
x+y-2≤0
y≥0
 (x∈z,y∈z),每一对整数(x,y)对应平面上一个点,经过其中任意两点作直线,则不同直线的条数是(  )
A、14B、19C、36D、72

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+2≥0
x+y-2≤0
y≥0
,每一对整数(x,y)对应平面上一个点,则过这些点中的其中两个点可作
 
条不同的直线.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省许昌市三校高三(上)期末数学试卷(理科)(解析版) 题型:选择题

已知实数x、y满足 (x∈z,y∈z),每一对整数(x,y)对应平面上一个点,经过其中任意两点作直线,则不同直线的条数是( )
A.14
B.19
C.36
D.72

查看答案和解析>>

科目:高中数学 来源:2011年浙江省嘉兴市海盐县元济高级中学高考全真压轴数学试卷(文科)(解析版) 题型:解答题

已知实数x,y满足,每一对整数(x,y)对应平面上一个点,则过这些点中的其中两个点可作    条不同的直线.

查看答案和解析>>

科目:高中数学 来源:河南省期末题 题型:单选题

已知实数x,y满足(x∈Z,y∈Z),每一对整数(x,y)对应平面上一个点,经过其中任意两点作直线,则不同直线的条数是
[     ]
A.14
B.19
C.36
D.72

查看答案和解析>>

同步练习册答案