精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,
(1)求tanA;
(2)若BC=1,求ACAB的最大值,并求此时角B的大小.

【答案】
(1)

解:由正弦定理知

∵0<A<π,


(2)

解:在△ABC中,BC2=AC2+AB2﹣2ACABcosA,且BC=1,

∴1=AC2+AB2﹣ACAB,

∵AC2+AB2≥2ACAB,

∴1≥2ACAB﹣ACAB,

即ACAB≤1,当且仅当AC=AB=1时,ACAB取得最大值1,

此时


【解析】(1)由正弦定理化简已知可得 ,利用三角函数恒等变换的应用进一步化简可得 ,结合范围0<A<π,即可得解.(2)由已知及余弦定理可得1=AC2+AB2﹣ACAB,利用基本不等式解得ACAB≤1,从而得解.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每吨所需要的原材料A,B,C的数量和一周内可用资源数量如下表所示:

原材料

甲(吨)

乙(吨)

资源数量(吨)

A

1

1

50

B

4

0

160

C

2

5

200

如果甲产品每吨的利润为300元,乙产品每吨的利润为200元,那么适当安排生产后,工厂每周可获得的最大利润为______元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,已知sinA= ,tan(A﹣B)=﹣
(1)求tanB的值;
(2)若b=5,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2﹣bx﹣1>0的解集是 ,则不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,

)求数列的通项公式;

)若数列的公比大于,且,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱ABCD﹣A1B1C1D1的底面ABCD为正方形,AA1⊥AC,M、N分别为棱AA1、CC1的中点.

(1)求证:直线MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取线段C1D1的中点Q,求二面角Q﹣MD﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3-3ax+b(a≠0).

(1)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;

(2)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为﹣6的等差数列{an}的前7项和为0,等比数列{bn}满足b3=a7 , |b3﹣b4|=6.
(1)求数列{bn}的通项公式;
(2)是否存在正整数k,使得数列{ }的前k项和大于 ?并说明理由.

查看答案和解析>>

同步练习册答案