精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)C的普通方程和的直角坐标方程;

(2)C上的点到距离的最大值.

【答案】(1)C的普通方程为的直角坐标方程为(2)3

【解析】

1)把曲线C的参数方程平方相加可得普通方程,把xρcosθyρsinθ代入ρcosθρsinθ+40,可得直线l的直角坐标方程;

2)设出椭圆上动点的坐标(参数形式),再由点到直线的距离公式写出距离,利用三角函数求最值.

1)由t为参数),因为,且

所以C的普通方程为

ρcosθρsinθ+40,得xy+40

即直线l的直角坐标方程为得xy+40

2)由(1)可设C的参数方程为(为参数,)

P到直线得xy+40的距离为:

C上的点到的距离为

时,取得最大值6,故C上的点到距离的最大值为3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业在精准扶贫行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是(

A.具有正线性相关关系

B.回归直线过样本的中心点

C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg

D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将数列的前项分成两部分,且两部分的项数分别是,若两部分和相等,则称数列的前项的和能够进行等和分割.

1)若,试写出数列的前项和所有等和分割;

2)求证:等差数列的前项的和能够进行等和分割;

3)若数列的通项公式为:,且数列的前项的和能够进行等和分割,求所有满足条件的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

(1)若,求出函数在区间上的最大值.

(2)若,求出函数的单调区间(不必证明)

(3)若存在,使得关于方程有三个不相等的实数根,求出实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)C的普通方程和的直角坐标方程;

(2)C上的点到距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的值域;

2)当时,求的最小值

3)是否存在实数,同时满足下列条件:① ;② 的定义域为时,其值域为.若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列六个命题:

1)若,则函数的图像关于直线对称.

2的图像关于直线对称.

3的反函数与是相同的函数.

4无最大值也无最小值.

5的最小正周期为.

6有对称轴两条,对称中心有三个.

则正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

同步练习册答案