精英家教网 > 高中数学 > 题目详情
11.如图,四边形 ABCD是平行四边形,AB=1,AD=2,AC=$\sqrt{3}$,E 是 AD的中点,BE与AC 交于点F,GF⊥平面ABCD.
(1)求证:AB⊥面AFG;
(2)若四棱锥G-ABCD 的体积为$\frac{{\sqrt{3}}}{6}$,求B 到平面ADG 的距离.

分析 (1)证明AB⊥AC,AB⊥GF,即可证明AB⊥面AFG;
(2)若四棱锥G-ABCD 的体积为$\frac{{\sqrt{3}}}{6}$,求出GF,利用等体积方法求B 到平面ADG 的距离.

解答 (1)证明:∵AB=1,AD=2,AC=$\sqrt{3}$,
∴BC2=AB2+AC2
∴AB⊥AC,
∵GF⊥平面ABCD,
∴AB⊥GF,
∵GF∩AC=F,
∴AB⊥面AFG;
(2)解:由(1)可知SABCD=$\sqrt{3}$,
四棱锥G-ABCD 的体积为$\frac{{\sqrt{3}}}{6}$=$\frac{1}{3}•\sqrt{3}•GF$,∴GF=$\frac{1}{2}$,
$∠CAD=\frac{π}{6},∠BAC=\frac{π}{2}$,
∴$∠BAD=\frac{2π}{3}$,AB=AE=1,
∴$∠AEB=\frac{π}{6}$,∴△AEF为等腰三角形,AE=1,
∴AF=EF=$\frac{\sqrt{3}}{3}$,AG=GE=$\sqrt{\frac{1}{4}+\frac{1}{3}}$=$\frac{\sqrt{21}}{6}$,
△AGE中,AE边上的高为$\sqrt{\frac{7}{12}-\frac{1}{4}}$=$\frac{\sqrt{3}}{3}$,
∴S△AEG=$\frac{1}{2}×1×\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{6}$,S△ABE=$\frac{1}{2}×AB×AE×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
由等体积可得$\frac{1}{3}×\frac{\sqrt{3}}{4}×GF=\frac{1}{3}×\frac{\sqrt{3}}{6}h$,∴h=$\frac{3}{4}$,
即B 到平面ADG 的距离为$\frac{3}{4}$.

点评 本题考查点到平面的距离距离的求法,直线与平面垂直的判定定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,两焦点分别为F1、F2,过F1的直线交椭圆C于M、N两点,且△MF2N的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若|MN|=$\frac{8}{5}$,求△MF2N的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x<k}\\{x|x-1|,k≤x≤a}\end{array}\right.$,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥A-CDFE中,底面CDFE是直角梯形,CE∥DF,EF⊥EC,$CE=\frac{1}{2}DF$,AF⊥平面CDFE,P为AD中点.
(Ⅰ)证明:CP∥平面AEF;
(Ⅱ)设EF=2,AF=3,FD=4,求点F到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f (x)=${e^x}-\frac{1}{x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=lnx-\frac{2}{x}$的零点所在的大致区间是(  )
A.(e,+∞)B.$(\frac{1}{e},1)$C.(2,3)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一直线 l 过直线 l1:2x-y=1 和直线 l2:x+2y=3 的交点 P,且与直线 l3:x-y+1=0 垂直.
(1)求直线 l 的方程;
(2)若直线 l 与圆 C:(x-a)2+y 2=8 (a>0)相切,求 a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.
(1)当$a=\frac{3}{2}$时,直线l与圆C相较于A,B两点,求弦AB的长;
(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,OABC是四面体,G是△ABC的重心,G2是OG上一点,且OG=3OG1,则(  )
A.$\overrightarrow{O{G_1}}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$B.$\overrightarrow{O{G_1}}=\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$
C.$\overrightarrow{O{G_1}}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$D.$\overrightarrow{O{G_1}}=\frac{3}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}+\frac{3}{4}\overrightarrow{OC}$

查看答案和解析>>

同步练习册答案