【题目】设二次函数f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;
(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.
【答案】(1)5≤f(-2)≤10;(2)[-2,0).
【解析】
(1)用和表示 ,再根据不等式的性质求得.
(2)对进行参变分离,根据 和求得.
解 (1)方法一
∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.
方法二 设f(-2)=mf(-1)+nf(1),
即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:
∴f(-2)=3f(-1)+f(1),
下同方法一.
(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,
即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;
当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;
当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,
而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;
当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,
而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,
∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0).
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
根据频率分布直方图填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关.
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:K2=.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.
(1)求直线l的普通方程和曲线的直角坐标方程;
(2)已知点的极坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,点是直线:上的一动点,过点作圆M的切线、,切点为、.
(Ⅰ)当切线PA的长度为时,求点的坐标;
(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;
(Ⅲ)求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0 .
(1)求p0的值;
(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是,甲、乙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.设每人回答问题正确与否相互独立的.
(Ⅰ)求乙答对这道题的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com