精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为sn,sn=2an-3n(n∈N*).
(1)求证数列{an+3}是等比数列;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在三项,它们可以构成等差数列.若存在,请给出一组适合条件的项,若不存在,请说明理由.
分析:(1)根据an+1=Sn+1-Sn,求得an+1=2an+3,整理可得
an+1+3
an+3
=2
判断出数列{an+3}是等比数列,
(2)由(1)知数列{an+3}是等比数列,利用等比数列的通项公式求得an+3进而求得an
(3)设存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差数列,根据等差中项的性质可知2ap=as+ar,利用(2)中的an展开得2p+1=2s+2r,2p-s+1=1+2r-s,进而根据2p-s+1,2r-s为偶数,而1+2r-s为奇数,判断出假设不成立.故可知不存在这样的三项.
解答:证明:(1):因为Sn=2an-3n,所以Sn+1=2an+1-3(n+1),
则an+1=2an+1-2an-3,所以an+1=2an+3,
an+1+3
an+3
=2

数列{an+3}是等比数列,
解:(2)由(1)知数列{an+3}是等比数列
又a1=S1=3,a1+3=6,
∴an+3=6•2n-1=3•2n
所以an=3•2n-3.
(3)设存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差数列,则2ap=as+ar,即2(3•2p-3)=3•2s-3+3•2r-3
即2p+1=2s+2r,2p-s+1=1+2r-s,2p-s+1,2r-s为偶数,而1+2r-s为奇数,
所以2p+1=2s+2r不成立,故不存在满足条件的三项
点评:本题考查了数列的递推式,等比关系的确定,等比数列通项公式,等差数列的性质,解题的关键是由题设中的递推关系得出数列an=3•2n-3,本题第三小题是难点,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案