精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD,底面ABCD是∠A=60°,边长为a的菱形,又PD⊥底面ABCD,且PD=CD,点M,N分别是棱AD,PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)三棱锥A-PBM的体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(1)利用线面平行的判定定理进行判断.(2)利用面面垂直的判定定理进行判断.(3)VA-PBM=VP-ABM=
1
3
S△ABM•PD,代入即可.
解答: 解:(1)证明:取PB中点Q,连结MQ、NQ,
因为M、N分别是棱AD、PC中点,
所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.
DN∥MQ
MQ⊆平面PMB
DN?平面PMB

⇒DN∥平面PMB.
(2)
PD⊥平面ABCD
MN⊆平面ABCD
⇒PD⊥MB,
又因为底面ABCD是∠A=60°,边长为a的菱形,且M为AD中点,
所以MB⊥AD.又AD∩PD=D,
所以MB⊥平面PAD.
MB⊥平面PAD
MB⊆平面PMB

⇒平面PMB⊥平面PAD,
(3)VA-PBM=VP-ABM=
1
3
S△ABM•PD=
1
3
1
2
a
2
3
a
2
•a=
3
a
3
24
点评:本题主要考查直线和平面平行以及面面垂直的判定定理,要求熟练掌握相应的判定定理和应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a1a3a5=8,则a3=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1+i,则
z2-2z
z-1
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)满足:2f(x)+xf′(x)>x2,则f(x)在区间[-1,1]内(  )
A、没有零点
B、恰有一个零点
C、至少一个零点
D、至多一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,-π<φ≤π)的最小正周期为6π,且当x=
π
2
时,f(x)取得最大值,则(  )
A、f(x)=2sin(
x
3
-
π
3
)
B、f(x)=2sin(
x
3
+
π
3
)
C、f(x)=2sin(
x
3
-
π
6
)
D、f(x)=2sin(
x
3
+
π
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2a2x-1,g(x)=x2+ax-1,若f(1)=g(1)且a≠1,则2a÷a2=(  )
A、±2
2
B、±
2
2
C、2
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
3
x3-
a+1
2
x2+x+b
,其中a,b∈R.
(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求f(x)的解析式;
(2)当函数f(x)在x=2处取得极值为
1
3
时,试确定f(x)在区间[
1
2
,3]
上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-x+1的零点所在区间是(  )
A、(-3,-2)
B、(-2,-1)
C、(-1,0)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品进价为每件8元,若按每件10元出售可销售100件,若售价每增加1元,则日销量减少10件,问商品售价为
 
元时,每天所赚的利润最大.

查看答案和解析>>

同步练习册答案