精英家教网 > 高中数学 > 题目详情
已知两条相交直线a,b,a∥平面,则b与的位置关系是(     )
A.b平面B.b与平面相交
C.b∥平面D.b在平面
D
因为两条相交直线a,b,a∥平面,所以b与相交或b∥平面,因而b在平面外.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.

(Ⅰ)求证:DM∥平面APC;
(II)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,在四棱锥中,底面为平行四边形,中点,平面中点.
(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,在边长为2的菱形中,的中点.(Ⅰ)求证:平面 ;
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,分别是正三棱柱的棱的中点,且棱.

(Ⅰ)求证:平面
(Ⅱ)在棱上是否存在一点,使二面角的大小为,若存在,求的长;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示,已知M、N分别是AC、AD的中点,BCCD.

(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求证:平面B CD平面ABC;
(Ⅲ)若AB=1,BC=,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列各图是正方体或三棱锥,分别是所在棱的中点,这四个点不共面的图象共有                   (填写序号)

①              ②                  ③                   ④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四棱锥P—ABCD中,侧面PAD、侧面PCD与底成ABCD都垂直,底面是边长为3的正方形,PD=4,则四棱锥P—ABCD的全面积为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的直线,是不同的平面,若①,则其中能使的充分条件的个数为(    )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案