精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cosxsin2x,下列结论中错误的是(
A.y=f(x)的图象关于(π,0)中心对称
B.y=f(x)的图象关于x= 对称
C.f(x)的最大值为
D.f(x)既是奇函数,又是周期函数

【答案】C
【解析】解:
A、因为f(2π﹣x)+f(x)=cos(2π﹣x)sin2(2π﹣x)+cosxsin2x=﹣cosxsin2x+cosxsin2x=0,故y=f(x)的图象关于(π,0)中心对称,A正确;
B、因为f(π﹣x)=cos(π﹣x)sin2(π﹣x)=cosxsin2x=f(x),故y=f(x)的图象关于x= 对称,故B正确;
C、f(x)=cosxsin2x=2sinxcos2x=2sinx(1﹣sin2x)=2sinx﹣2sin3x,令t=sinx∈[﹣1,1],则y=2t﹣2t3 , t∈[﹣1,1],则y′=2﹣6t2 , 令y′>0解得 ,故y=2t﹣2t3 , 在[ ]上增,在[ ]与[ ]上减,又y(﹣1)=0,y( )= ,故函数的最大值为 ,故C错误;
D、因为f(﹣x)+f(x)=﹣cosxsin2x+cosxsin2x=0,故是奇函数,又f(x+2π)=cos(2π+x)sin2(2π+x)=cosxsin2x,故2π是函数的周期,所以函数即是奇函数,又是周期函数,故D正确.
由于该题选择错误的,故选:C.
【考点精析】根据题目的已知条件,利用函数的最大(小)值与导数和二倍角的正弦公式的相关知识可以得到问题的答案,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值;二倍角的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于不重合的两个平面,给定下列条件:

①存在平面,使得都垂直于

②存在平面,使得都平行于

内有不共线的三点到的距离相等;

④存在异面直线,使得

其中,可以判定平行的条件有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中有如下命题,其中正确的是(

A. 若直线ab共面,直线bc共面,则直线ac共面;

B. 若平面α内的任意直线m∥平面β,则平面α∥平面β

C. 若直线a与平面不垂直,则直线a与平面内的所有直线都不垂直;

D. 若点P到三角形三条边的距离相等,则点P在该三角形所在平面内的射影是该三角形的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.

(1)证明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为 ,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四种说法:

是等边三角形;②;③;④直线所成的角的大小为.其中所有正确的序号是( )

A. ①③B. ②④C. ①②③D. ①②④

查看答案和解析>>

同步练习册答案