精英家教网 > 高中数学 > 题目详情
20.写出函数f(x)=$\sqrt{cosx}$的定义域为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z..

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,只需cosx≥0,
即2kπ-$\frac{π}{2}$≤x≤2kπ+$\frac{π}{2}$,k∈Z.
故答案为:[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z.

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.直线y=kx+1与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1相交,且过焦点,则k=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinα-cosβ=-$\frac{1}{2}$,sinβ-cosα=-$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),则sin(α+β)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若α为第二象限角,则k•180°+α(k∈Z)的终边所在的象限是(  )
A.第一象限B.第一、二象限C.第一、三象限D.第二、四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某长途客车站有6个售票窗口,3名乘客各选一个窗口购票,共有216种不同的选择方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将直线l:y=2x绕点P(1,-2)旋转180°得到直线l′,则直线l′的方程是2x-y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若方程a=|2x+1-2|恰有一个根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2过F1作不与x轴重合的直线l1,与椭圆C交于P,Q两点,若△PQF2的周长为4$\sqrt{2}$.
(1)求椭圆C的标准方程
(2)过F1作与直线l1垂直的直线l2,且l2与椭圆C交于点M,N两点,求四边形PMQN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设数列{an}、{bn}都是等差数列,且a1=15,b1=35,a2+b2=60,则a36+b36=400.

查看答案和解析>>

同步练习册答案