【题目】在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)点P是圆C上任一点,求△PAB面积的最小值.
【答案】(1),;(2)4.
【解析】
(1)由圆C的参数方程消去t得到圆C的普通方程,由直线l的极坐标方程,利用两角和与差的余弦函数公式化简,根据x=ρcosθ,y=ρsinθ转化为直角坐标方程即可;
(2)将A与B的极坐标化为直角坐标,并求出|AB|的长,根据P在圆C上,设出P坐标,利用点到直线的距离公式表示出P到直线l的距离,利用余弦函数的值域确定出最小值,即可确定出三角形PAB面积的最小值.
解:(1)由,化简得:,
消去参数t,得(x+5)2+(y﹣3)2=2,
∴圆C的普通方程为(x+5)2+(y﹣3)2=2.
由ρcos(θ),化简得ρcosθρsinθ,
即ρcosθ﹣ρsinθ=﹣2,即x﹣y+2=0,
则直线l的直角坐标方程为x﹣y+2=0;
(2)将A(2,),B(2,π)化为直角坐标为A(0,2),B(﹣2,0),
∴|AB|2,
设P点的坐标为(﹣5cost,3sint),
∴P点到直线l的距离为d,
∴dmin2,
则△PAB面积的最小值是S224.
科目:高中数学 来源: 题型:
【题目】上饶某中学一研究性学习小组早晨在校门口询问调查同学的体重,对来校同学依次每5人抽取一人询问体重,共抽取40位同学,将他们的体重(分成六段:,,,,,,统计后得到如图的频率分布直方图.
(1)此研究性学习小组在采样中,用到的是什么抽样方法?并求这40位同学体重的众数和中位数的估计值.
(2)从体重在的同学中任意抽取3位,求体重在,内都有同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在原点,焦点在坐标轴上,焦距为2.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7∶3,求椭圆和双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一景区的截面图,是可以行走的斜坡,已知百米,是没有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡上,身上只携带着量角器(可以测量以你为顶点的角).
(1)请你设计一个通过测量角可以计算出斜坡的长的方案,用字母表示所测量的角,计算出的长,并化简;
(2)设百米,百米,,,求山崖的长.(精确到米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形为正方形,四边形、为两个全等的等腰梯形,,,若这个刍甍的体积为,则的长为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像关于直线对称,且.
(1)求的表达式;
(2)若将图像上各点的横坐标变为原来的,再将所得图像向右平移个单位,得到的图像,且关于的方程在区间上有且只有一个实数解,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com