精英家教网 > 高中数学 > 题目详情
8.一个多面体的直观图如图1所示,其正(主)视图,侧(左)视图,俯视图如图2所示.
(1)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证;OE∥平面A1C1C;
(2)求平面AA1D1与平面ABCD所成二面角的余弦值.

分析 (1)连结AC,BD,交于O点,则OE∥A1C,由此能证明OE∥平面A1C1C.
(2)分别取A1D1,B1C1的中点M,N,连结AM,CN,MN,推导出∠MAC为平面AA1D1与平面ABCD所成二面角的平面角,由此能求出平面AA1D1与平面ABCD所成二面角的余弦值.

解答 证明:(1)如图,连结AC,BD,交于O点,
∵E为AA1的中点,O为AC的中点,
∴E为AA1的中点,O为AC的中点,
∴在△AA1C中,OE为△AA1C的中位线,
∴OE∥A1C,
∵OE?平面A1C1C,A1C?平面A1C1C,
∴OE∥平面A1C1C.
解:(2)分别取A1D1,B1C1的中点M,N,连结AM,CN,MN,
平面AMN⊥平面ABCD,
∵BD⊥AC,∴BD⊥AM,
过A作直线l∥BD,∴AM⊥l,AC⊥l,
∴∠MAC为平面AA1D1与平面ABCD所成二面角的平面角,
在Rt△AMH中,由题意AH=$\frac{\sqrt{2}}{4}a,MH=a$,
由勾股定理得AM=$\sqrt{(\frac{\sqrt{2}}{4}a)^{2}+{a}^{2}}$=$\frac{3\sqrt{2}}{4}a$,
∴cos∠MAH=$\frac{\frac{\sqrt{2}a}{4}}{\frac{3\sqrt{2}}{4}a}$=$\frac{1}{3}$,
∴平面AA1D1与平面ABCD所成二面角的余弦值为$\frac{1}{3}$.

点评 本题考查线面平行的证明,考查二面解和余弦值的求法,是中档题,解题时 要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知点H(-1,0),动点P是y轴上除原点外的一点,动点M满足PH⊥PM,且PM与x轴交于点Q,Q是PM的中点.
(1)求动点M的轨迹E的方程;
(2)已知直线l1:x=my+$\frac{1}{8}$与曲线E交于A,C两点,直线l2与l1关于x轴对称,且交曲线E于B,D两点,试用m表示四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(1)证明:AC⊥DE;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为60°,求PD:AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|$\frac{1}{2}$<2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)记M-N={x|x∈M,且x∉N},求A-B与B-A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.比较大小:cos(-508°)<cos(-144°).( 填>,<或=)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠ABC=120°,PD⊥AB,平面PAB⊥平面ABCD,点E,F为棱PB,PC中点,二面角F-AD-C的平面角的余弦值为$\frac{3\sqrt{13}}{13}$.
(1)求棱PA的长;
(2)求PD与平面ADFE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输入的n值为7,则输出的S值为(  )
A.$\sqrt{7}$B.2$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}是公差大于0的等差数列,Sn为数列{an}的前n项和.已知S3=9,且2a1,a3-1,a4+1构成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),设Tn要是数列{bn}在前n项和,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案