精英家教网 > 高中数学 > 题目详情
在三棱锥中,,底面是正三角形,分别是侧棱的中点.若平面平面,则平面与平面所成二面角(锐角)的余弦值等于(      )
A.B.C.D.
A

试题分析:设的中点为的中点为,连接.在平面
内作,则平面平面.

由已知得.
.
∵平面平面
平面.
.
是等边三角形,的中点为
. ∵
.
是平面与平面所成二面角(锐角)的平面角.
设等边的边长为,侧棱长为.
分别是侧棱的中点,
的中点.
,∴.
.
.
.
.故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。

(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知

求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,.

(Ⅰ)求证:平面⊥平面
(Ⅱ)若二面角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,的中点
(I)求证:平面平面
(II)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,设顶点A在底面上的射影为R.
(Ⅰ)求证:
(Ⅱ)设点在棱上,且,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的所有棱长都为,且平面中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正四棱柱中,分别是的中点,的中点,点在四边形上或其内部运动,且使,对于下列命题:①点可以与点重合;②点可以与点重合;③点可以在线段上;④点可以与点重合.
其中正确命题的序号是            (把你认为正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四面体(所有棱长都相等)中,分别是的中点,下面四个结论中不成立的是(  )
A.平面平面B.平面
C.平面平面D.平面平面

查看答案和解析>>

同步练习册答案