精英家教网 > 高中数学 > 题目详情
已知a是函数f(x)=2x+log2x的零点,若0<x0<a,则f(x0)的值满足(  )
分析:由题意得,函数的零点就是方程的根,也即是函数图象与x轴交点的横坐标.又知函数的单调性,即可求出f(x0)的正负.
解答:解:由于a是函数f(x)=2x+log2x的零点,则f(a)=0,
又因为函数f(x)=2x+log2x在(0,+∞)上是增函数,
所以当0<x0<a时,f(x0)<f(a)即f(x0)<0.
故答案选 C.
点评:本题主要考查函数的零点及函数的单调性.函数的零点的研究就可转化为相应方程根的问题,函数与方程的思想得到了很好的体现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a是函数f(x)=2x-log
1
2
x的零点,若0<x0<a,则f(x0)的值满足(  )
A、f(x0)=0
B、f(x0)>0
C、f(x0)<0
D、f(x0)的符号不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是函数f(x)=x3-log
12
x的零点,若0<x0<a,则f(x0
 
0.(填“<”,“=”,“>”).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,
1
2
,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知a是函数f(x)=x-1的零点,b=lg4+2lg5+3,正数m,n满足m+n=2,则
a
m
+
b
n
的最小值为
3+
5
3+
5

查看答案和解析>>

同步练习册答案