精英家教网 > 高中数学 > 题目详情

已知双曲线的中心在原点,焦点在y轴上,焦距为16,离心率为数学公式,则双曲线的方程为________.


分析:设出双曲线方程,利用双曲线的焦距为16,离心率为,建立方程组,可求双曲线的几何量,从而可得双曲线的方程.
解答:设双曲线方程为(a>0,b>0),则
∵双曲线的焦距为16,离心率为
,∴c=8,a=6,∴b2=c2-a2=28
∴双曲线方程为
故答案为:
点评:本题考查双曲线的方程与几何性质,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•梅州一模)已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年全国卷Ⅰ)(本小题满分12分)

双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.

(Ⅰ)求双曲线的离心率;

(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.

   (Ⅰ)求双曲线的离心率;

   (Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:2014届河南省高二上学期期末考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)

双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.

(Ⅰ)求双曲线的离心率;

(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省高二期末测试数学(理) 题型:解答题

(本题满分14分)双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.

(Ⅰ)求双曲线的离心率;

(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

 

 

查看答案和解析>>

同步练习册答案