【题目】(本小题满分13分)
品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。
现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令
,
则是对两次排序的偏离程度的一种描述。
(Ⅰ)写出的可能值集合;
(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有,
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。
科目:高中数学 来源: 题型:
【题目】已知a为正的常数,函数f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函数f(x)的单调递增区间;
(2)设g(x)= ,求g(x)在区间[1,e]上的最小值.(e≈2.71828为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线: ,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线: .
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线,求的参数方程;
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程是(为参数),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于,两点.
(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在区间(﹣1,1)上的函数f(x)= 是奇函数,且f( )= ,
(1)确定f(x)的解析式;
(2)判断f(x)的单调性并用定义证明;
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】朱世杰是历史上最未打的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”.其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”.在这个问题中,前5天应发大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[1,+∞)上的函数f(x)= 给出下列结论:
①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( , ),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正确命题的序号是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com